Managing ground cover in the cropping zone of southern NSW

Alison Bowman¹ and Brendan Scott²
¹Director, Productivity & Food Security Research, Wagga Wagga
²Adjunct Professor, EH Graham Centre for Agricultural Innovation, Wagga Wagga

What is ground cover?
Ground cover is any material found on or near the soil surface that protects the soil from the erosive action of wind and water (rain drop impact and overland flow). Materials such as loose surface stones and dung can provide an effective ground cover, but plant material (herbage ground cover), either alive or dead, is the most common and most important. The percentage ground cover is usually described as the opposite of percent bare soil surface. It is assessed when viewed from directly above the ground.

Why is ground cover important?
Managing pastures and crops, and their residues to maintain adequate ground cover protects the soil from the erosive forces of wind and water. Soil, nutrients and organic matter are retained and water quality problems in dams and waterways are minimised by the reduction of erosion. Adequate ground cover will reduce runoff and increase the infiltration of rainfall into the soil. This increases the soil moisture available for plant growth.

Components of herbage ground cover
• Canopy cover is standing plants or their residues greater than 5 cm in height. The height of the cover and its horizontal profile can be important for minimising wind erosion.
• Contact cover is herbage in contact with the soil and includes prostrate stems and leaves, litter and basal areas of plants. Attached plant material is more effective than detached material (litter) for run-off and wind erosion control, as it is less likely to be carried away.

Key points
• Actively growing crops and pastures, and their residues, protect the soil surface from erosion by wind and water.
• Pasture ground cover of 40–65% is recommended on the gently sloping to flat lands of southern NSW to minimise water erosion.
• Wind erosion is minimised with 50% ground cover of prostrate plants, and with as little as 20–30% for upright plants, and their residues, i.e. standing wheat stubble.
• Grazing management of dry residues of crop and pasture over summer/autumn is critical in most years for maintaining ground cover.

Figure 1. Raindrop impact on the soil surface. Photo: South Dakota State University.
Rain drop interception

The major role of ground cover is to intercept rain drops and reduce their impact on the soil surface. Falling rain drops possess energy that is dissipated on striking bare soil, breaking down soil structure and detaching soil particles (Figure 1). The detached particles typically form a surface seal that reduces the rate of infiltration of water and increases run-off. The soil particles can also be washed away in surface run-off. Plant cover protects the soil by intercepting drops and dissipating the associated energy. If soil structure is maintained, infiltration rates of water will also be maintained allowing water to soak into the soil. Canopy and contact cover are both important in protecting the soil against rain drop impact.

Run-off

Ground cover also impedes and slows run-off water, to give it more time to infiltrate and allow deposition of sediment. Contact cover that is attached is critically important in controlling surface run-off and promoting deposition of sediment. Detached contact cover or litter is effective only if it is not carried away in the run-off. The effectiveness of litter is enhanced by the presence of some attached cover.

Some lucerne stands may not effectively impede surface run-off and so may provide little protection against soil erosion. A stand of lucerne approaching flowering may have a canopy cover of about 75%, but erosion can occur as it may have little contact cover or litter because of grazing.

Contact cover is more important on sloping country than on flatter country. Typical relationships between groundcover and run-off and soil loss are given in Figure 2.

Wind erosion

Tall pastures and crops (>30 cm), and their standing attached residues, are most effective in minimising wind erosion. If cereal stubble is standing (30–60 cm tall), 20 to 30% cover is required to reduce the risk of erosion, as the standing stalks greatly reduce the wind speed at the soil surface (Findlater and Riethmuller 2000). With prostrate stubble, about 50% of the surface should be covered to control wind erosion. This is approximately 750–1000 kg/ha cereal stubble and 1500 kg/ha lupin stubble (Carter 2002; Carter undated). Much higher levels are required for wind erosion control if plant residues are detached or easily blown by the wind (for example, field pea stubble).

With annual pasture a ground cover of 30 to 50% is required to minimise wind erosion, which can be achieved with as little as 500 kg/ha of dry matter (Carter undated). As minimum ground cover occurs in late summer/early autumn in southern NSW, the values given would be the minimum required at that time of the year. Higher amounts are needed in early summer as grazing and decomposition reduce the ground cover over summer and into autumn.

Ground cover in southern NSW

An increase in ground cover is associated with the germination of annual pasture species and the sowing of crops, mainly cereals, following autumn/winter rains. This ground cover develops over winter and is at a maximum in late spring (October/November). Annual pastures develop ground cover more rapidly than cereal crops and lucerne (Figures 3 and 4). An annual pasture achieves a ground cover of >95% with dry matter production of only about 500 kg/ha, while this ground cover level is achieved with about 3000 kg/ha in lucerne pastures and about 5000 kg/ha in green cereal crops (Figure 3).

Grazing of dry residues over summer and into autumn progressively reduces ground cover. Annual pastures and lucerne have minimal ground cover in autumn, with grazed lucerne generally having lower ground cover than annual pastures (Figure 4). Cereal crop stubbles are frequently burnt in April/May leaving the soil surface exposed; retaining stubble offers greater protection of the soil.

In southern NSW the erosivity of rainfall is highest over summer as a result of intense storms and is minimal in winter (Figure 5). Heavy summer rainfall (January/February) can be damaging, but the soil surface is well protected when covered by matured annual pastures and crops. The time of highest erosion risk is early autumn as ground cover is usually minimal, following the break down of dead plant material over summer, and before new plant growth following the autumn break. However, while the soil is most exposed at this time of the year, rainfall erosivity and intensity tend to be lower.

Erosion risk is increased in dry seasons or drought years, as pastures are grazed to low ground cover
Managing ground cover

Pastures

Managing pastures is a compromise between production, animal health and environmental goals. However, grazing management during summer and into autumn is the key to minimising erosion. Once ground cover reaches 70%, stock should be excluded from erosion prone areas such as water ways and slopes. Less sensitive areas can be grazed to a lower ground cover, but continuing dry conditions may make it necessary to choose a small or ‘sacrifice’ area on

and the soil can be exposed over summer and into autumn. This expands the ‘time window’ of erosion risk. Similarly, where bush fire has destroyed ground cover during summer the risk of erosion is increased. Wind erosion may be reduced, in both these situations, by cultivating to produce a cloddy, rough soil surface.

Estimates of minimum ground cover required to control excessive erosion from run-off in southern NSW for different soil erodibilities and slopes are given in Table 1.

Figure 3. The relationship between ground cover and dry matter production for annual pasture (both green and dry), green lucerne, dry lucerne residue, growing cereal and cereal stubble in southern NSW (derived from Bowman unpublished).

Figure 4. The changes in ground cover of grazed lucerne and annual pasture (averaged 2005 to April 2007) showing the minimal ground cover in autumn (March–May; derived from Bowman unpublished).

Figure 5. The approximate monthly erosivity of rainfall in the cropping areas of south western NSW. Erosivity is a measure of energy in rainfall and rainfall intensity. Actual erosion will depend on ground cover, slope and erodibility of the soil type (derived from Rosewell and Turner 1992).
Estimating ground cover

A simple method which gives an estimate of ground cover involves standing in a representative part of the paddock with your feet half a metre apart. Visualise a square quadrat 0.5 × 0.5 m in front of your feet and look vertically into the pasture/crop to estimate the percentage of the area that is covered by plant material and litter. Do this approximately ten times across the paddock and average the results.

Inexperienced observers performed well compared to both experienced observers and objective measurements (Murphy and Lodge 2002), except that they tended to overestimate ground cover in the mid range. Accuracy may be improved by using photo guides of reference quadrats with known amounts of ground cover. Figures 7 to 9 give a set of standards for pasture and cereal stubble.

Cropping and stubble management

How much stubble do you have after harvest? Estimates can be made from grain yield. Stubble present after harvest is about 1.5 times the grain yield for grain yields of 0.5 to 4 t/ha in drier areas. However in the eastern higher rainfall areas as grain yields increase this rule breaks down. An estimate of stubble amount from grain yield based on data over 27 years from Wagga Wagga is given in Figure 6.

Managing stubble is a compromise between protecting the soil surface with ground cover and not having too much stubble at sowing the following season. Common practice in southern NSW is to graze stubbles. This has the effect of stock trampling down stubble and consuming small amounts. During April/May, if stubble loads are too great to permit sowing, it is burnt. This exposes the soil surface and is a potential window for erosion.

Farming systems that allow stubble retention are being developed and adopted. Straw spreaders on headers improve distribution of stubble and reduce the chance of clumps forming, blocking sowing machinery when sowing into the header windrows. Stubble can also be slashed or harrowed to produce shorter pieces, which flow through sowing machinery more easily. Precision agriculture systems also allow growers to sow through standing stubble using wider row spacings and inter-row sowing.

In dry or drought years, grazing of failed crops in spring, or cutting crops for hay, can seriously reduce ground cover as early as spring. Destocking or confining stock to smaller areas for hand feeding can reduce the erosion risk.

Table 1. Estimates of minimum amount of ground cover (%) required to reduce excessive run off and erosion, and sustain productivity for a range of slope gradients and soil erodibility classes for the southern cropping areas of NSW (from Lang and McDonald 2005).

<table>
<thead>
<tr>
<th>Erodibility class</th>
<th>Typical soil types</th>
<th>Paddock slope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Flat (&lt;2%)</td>
</tr>
<tr>
<td>Low</td>
<td>Deep sands, light clays</td>
<td>60 (40)*</td>
</tr>
<tr>
<td>Low–moderate</td>
<td>Sandy loams, light clays</td>
<td>60 (40)</td>
</tr>
<tr>
<td></td>
<td>Uniform clays (kraznozems and euchrozems (ferrosols))</td>
<td>60 (40)</td>
</tr>
<tr>
<td>Moderate–high</td>
<td>Uniform clays (sandy loams)</td>
<td>60 (40)</td>
</tr>
<tr>
<td></td>
<td>Cracking clays (vertosols)</td>
<td>60 (40)</td>
</tr>
<tr>
<td>High</td>
<td>Stilts, fine sandy loams</td>
<td>60 (40)</td>
</tr>
<tr>
<td></td>
<td>Red-brown earths (chromosols)</td>
<td>60 (40)</td>
</tr>
<tr>
<td></td>
<td>Red and yellow earths (kandosols)</td>
<td>60 (40)</td>
</tr>
<tr>
<td></td>
<td>Sodic duplex soils (sodosols)</td>
<td>60 (40)</td>
</tr>
<tr>
<td>Low–high</td>
<td>Drainage lines (all types)</td>
<td>100</td>
</tr>
</tbody>
</table>

*Ground cover values given in parentheses apply to the western margin where low annual rainfall may limit ability to consistently sustain higher values under profitable grazing systems.

Estimating ground cover

A simple method which gives an estimate of ground cover involves standing in a representative part of the paddock with your feet half a metre apart. Visualise a square quadrat 0.5 × 0.5 m in front of your feet and look vertically into the pasture/crop to estimate the percentage of the area that is covered by plant material and litter. Do this approximately ten times across the paddock and average the results.

Inexperienced observers performed well compared to both experienced observers and objective measurements (Murphy and Lodge 2002), except that they tended to overestimate ground cover in the mid range. Accuracy may be improved by using photo guides of reference quadrats with known amounts of ground cover. Figures 7 to 9 give a set of standards for pasture and cereal stubble.

Figure 6. Relationship between grain yield and estimated amount of stubble after harvest for Wagga Wagga, southern NSW (derived from Heenan et al 1994, and MK Conyers pers comm.).
Ground cover of annual pastures

Figure 7. Estimating ground cover of grazed annual pastures.
Ground cover of lucerne dominant pasture

Figure 8. Estimating ground cover of grazed lucerne dominant pastures.
Ground cover of cereal stubbles

Quadrat (1 m²)  Field view

2% ground cover

35% ground cover

75% ground cover

97% ground cover

Figure 9. Estimating ground cover of cereal stubble.
Acknowledgements

This guideline for best management practice was produced from a project conducted by Damien Doyle and Craig Muir (Industry & Investment NSW). Photographs in Figures 7, 8 and 9 by Sheila Lee (Murrumbidgee CMA).

References and further reading


Lang D, McDonald W (2005) Maintaining ground cover to reduce erosion and sustain production, Agfact P2.1.14, NSW Department of Primary Industries, Orange.


Further information


This project has been funded through the Australian and NSW Governments’ National Action Plan for Salinity and Water Quality.

This document was prepared for the Murrumbidgee CMA by Industry & Investment NSW.

© State of New South Wales through Department of Industry and Investment (Industry & Investment NSW). You may copy, distribute and otherwise freely deal with this publication for any purpose, provided that you attribute Industry & Investment NSW as the owner.

ISSN 1832-6668

Check for updates of this Primefact at: www.dpi.nsw.gov.au/primefacts

Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (October 2009). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of State of New South Wales through Industry & Investment NSW or the user’s independent adviser.

Job number 9667 PUB09/107