BOOMSPRAY CALIBRATION WORKSHEET

What item of equipment are you calibrating? ...

Area to be sprayed ha
Chemical: ..

Situation (pest/host): ..

Part A - Recording: Refer to the manufacturers’ charts and the chemical label.

<table>
<thead>
<tr>
<th>Step</th>
<th>Instructions</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1 | What is the **Minimum Desired Water Application Rate**?
Note: This may be expressed as a range. (From the chemical label) | L/ha |
| 2 | Select appropriate **Chemical Rate** from the label. | L/ha |
| 3 | Select a **Ground Speed** to suit spraying conditions.
(It must be realistic for the particular paddock conditions) | km/hr
Gear
rpm |
| 4 | Record the **Nozzle Type and Size** in the spray unit. Check the rated “water output” using the manufacturer’s nozzle chart. |
Type:
Size:
Rated output: ml/min |
| 5 | Select and set **Spray Operating Pressure** (use the manufacturer’s nozzle chart as a guide) | kpa
or
bar |
| 6 | **Tank size** | litres |
| 7 | Select **Minimum Boom Height** above target for these nozzles. | cm |

Part B - Calculating actual water application rate and quantity of chemical required per tank.

<table>
<thead>
<tr>
<th>Step</th>
<th>Instructions</th>
<th>Essential Measurements</th>
</tr>
</thead>
</table>
| 8 | Record **Output** (ml) from every Nozzle for 1 Minute | **Total Spray Output**
Add all nozzles, after worn and blocked nozzles have been replaced, and convert to litres per minute (divide total output by 1000) |
| 9 | Record actual **Effective Spray Width** (The distance across the outside nozzles plus the distance between two adjacent nozzles). | **Effective Spray Width** m |
| 10 | **Actual Ground Speed**
= Distance travelled (m) × 3.6 ÷ Time taken (sec)
= () × 3.6 ÷ () = kph | **Actual Ground Speed** kph |

Notes

* Determine **actual ground speed** by measuring a set distance, say 100 metres, under similar conditions to the area to be sprayed and timing how long it takes using the pre-determined gears and revs, with boomspray tank half full of water.

Check that the calculated Water Application Rate (on next page) is equal to, or greater than, the Minimum Desired Water Application Rate (from the label).
To calculate how much chemical to put into the tank

8 TOTAL SPRAY OUTPUT

(..................) litres/min

9 EFFECTIVE SPRAY WIDTH

(..................) metres

10 ACTUAL GROUND SPEED

(..................) kph

WATER APPLICATION RATE

\[
\text{Water application rate} = \frac{\text{Total output (litres/min) } \times 600}{\text{Spray width (m) } \times \text{Ground speed (km/hr)}} = \frac{() \times 600}{() \times ()} = \text{l/ha}
\]

OR (Using the calculator)

\[
\text{Water application rate} = \frac{() \times 600}{() \times ()} = \text{l/ha}
\]

2 CHEMICAL RATE

................. litres/ha

6 CAPACITY OF TANK

(VOLUME OF WATER IN THE TANK) = litres

HOW MUCH CHEMICAL TO PUT IN THE TANK

\[
\text{Volume of chemical} = \frac{\text{Chemical rate (l/ha)} \times \text{Volume of water in tank (litres)}}{\text{Water application rate (l/ha)}} = \frac{() \times ()}{()} = \text{litres/tank}
\]

OR (Using the calculator)

\[
\text{Volume of chemical} = \frac{() \times ()}{()} = \text{litres/tank}
\]

HOW MANY TANK LOADS ARE NEEDED FOR THE JOB?

\[
\text{Total spray mix volume required} = \text{Area to be sprayed (ha)} \times \text{Water application rate (l/ha)} = () \times () = \text{litres}
\]

\[
\text{Number of tanks} = \frac{\text{Total spray mix volume required (litres)}}{\text{Capacity of spray tank (litres)}} = \text{tanks}
\]

OR (Using the calculator)

\[
\text{Number of tanks} = \frac{()}{()} = \text{tanks}
\]

(To cross-check your calculations: \(\text{Number of tanks} \times \text{Volume of chemical per tank} = \text{Area to be sprayed} \times \text{Chemical rate}\))

\[
\text{Number of tanks} \times \text{Volume of chemical per tank} = \times =
\]

\[
\text{Area to be sprayed} \times \text{Chemical rate} = \times =
\]