

**Energy Saver** 

## Murray Farm Energy Forum

## **Solar Pumping**

August 2019



Presenter: Luke Christiansen from 2XE



## By the end of this presentation, you will understand:





**Opportunities for solar pumping** 



Solar pumping solutions

|   | $\geq$ |
|---|--------|
| 3 |        |
| 0 |        |
|   |        |

#### The design process

Solar pumping economics



<u>0</u>4

#### Where to go for more information



## Part 1: Opportunities for solar pumping



## Why use solar pumping?



## What pumping tasks suit solar power

If you already use electric pumps for irrigation and are grid connected You pump water to header tanks or dams for stock or domestic use

You have substantial and efficient water storage

You have a discrete day time pumping task as part of your broader system You have potential to reduce your electricity usage to a more favourable tariff strcture

## Livestock drinking-water supply

Continuous (year round) supply and relatively small volumes make solar pumping well suited for stock pumping

Water can be pumped during the day from a bore, dam or steam into a stock dam or elevated tank.





## **Domestic water**

Solar PV can provide significant savings for domestic and cleaning pumping systems



These systems can be solely for water pumping but are often designed to supply domestic power as part of an integrated system

## **Irrigation pumping**

Approximately 5 million megalitres of irrigation water is used per year in NSW alone (ABS, 2014) Diesel or grid connected electric pumps lift water from rivers and bores to pressurised distribution systems While electric pumping is more efficient, high network charges and connection costs have inhibited growth



## **Irrigation pumping – the business case**



Solar powered irrigation systems are a significant investment and require a detailed site analysis

Depends on: - Number of months pumping per year -Time of day of irrigation - Potential to export excess energy +Many more factors

## Irrigation pumping – the business case



If pumping is seasonal or irregular, try to identify ways to use your solar when it's not used, i.e. farm electricity or export to the grid

### **Blueberry (L/day per plant)**



## Irrigation pumping – what to ask yourself





## Part 2: Solar pumping solutions



## Solar pumping system



## Sunlight



## Solar array – panel types

#### Monocrystalline

- made from silicon slices (wafers) cut from a single large crystal
- typically black
- reputation for higher efficiency
- more expensive to produce

#### Polycrystalline

- cut from blocks of cast silicon rather than single large crystals
- cheaper to produce
- cheaper to buy
- typically dark blue

#### Thin Film

- layers of semiconducting and conducting materials are deposited directly onto metal, glass or plastic
- cheapest
- least efficient
- better at high temps







## **Solar array - mounting**



**Ground-mounted** 



Floating

# Typically your best option!

**Roof-mounted** 



**Pole-mounted** 

## Solar array – tilt angle and tracking

#### Table 3: Monthly comparison between different mounting options.

| Month               | Fixed tilt,    | Manual tilt, | Single-axis   | Dual-axis     |
|---------------------|----------------|--------------|---------------|---------------|
|                     | latitude (PSH) | month (PSH)  | tracker (PSH) | tracker (PSH) |
| January             | 6.05           | 6.52         | 7.48          | 8.06          |
| February            | 5.57           | 5.72         | 6.79          | 7.05          |
| March               | 5.43           | 5.43         | 6.55          | 6.62          |
| April               | 4.79           | 4.84         | 5.63          | 5.70          |
| May                 | 3.74           | 3.89         | 4.23          | 4.36          |
| June                | 3.30           | 3.54         | 3.67          | 3.88          |
| July                | 3.88           | 4.12         | 4.38          | 4.61          |
| August              | 4.96           | 5.08         | 5.83          | 5.99          |
| September           | 5.46           | 5.46         | 6.44          | 6.47          |
| October             | 5.90           | 5.99         | 7.17          | 7.33          |
| November            | 5.68           | 6.02         | 6.79          | 7.17          |
| December            | 5.69           | 6.35         | 7.14          | 7.83          |
| Yearly average      | 5.04           | 5.25         | 6.01          | 6.25          |
| Percentage increase | -              | 4.2%         | 19.3%         | 24.2%         |

## **Solar array – tracking**



## **System controllers**

Solar controller / Maximum Power Point Tracker

- Used to match the arrays output with the required current or voltage of the motor
- Also known as a current booster

#### Pump controller

- An electronic controller that turns the pump on and off.
- Usually activated by a float switch
- Can integrate a maximum power point tracker

| Converts DC electricity     |   |
|-----------------------------|---|
| produced by the solar panel | S |
| into AC electricity         |   |

Solar invertore

- Can then use AC electricity with the grid and AC pumps/motors
- This output can be combined with other power sources







## **System controllers - inverters**

#### String inverters

- connected to a series (string) of solar panels
- 1 per solar system
- converts DC to AC for the solar system as a whole

#### Microinverters

- mounted on the back of a solar panel to make the panel itself a grid-interactive module
- 1 per solar panel
- no DC wiring in the system at all; standard AC cables are simply run to each panel for connection





## **Solar pumping configurations**

#### Stand-alone solar

Solar + grid

Solar + Batteries

Solar + diesel

## Solar (stand-alone)



## Solar with grid



A grid connected solar pumping configuration using a combination of solar and grid power as the energy source

## **Solar + diesel generation**



## **Solar + batteries**





## Part 3: The design process



## **Considering installing solar pumping?**

## General energy assessment:

Commission a general energy assessment to accurately document the pumping quantity, cost and time-of-use of your irrigation system

#### Address efficiency first:

Address efficiency savings first, e.g.

- Poor layouts
- Pipe diameters
  - Pump size
- Maintenance

#### Check water storage:

Check your water storage infrastructure to minimise leakage and evaporation.

Take stock of your total water storage.

#### **Contact:**

Get in touch with your irrigation supplier first to understand your pumping requirements. Then contact a solar pumping provider

## The design process



## Working with suppliers

**Initial discussion** 

Lay the ground work for a longterm engagement / relationship

#### On-site investigation Provide all the necessary information to ensure the equipment provided is the best for the job

#### Quote

Take your time assessing multiple quotes. Get help from a third party if necessary

#### Commissioning

Ensure operation and maintenance manuals are provided and a commissioning check is completed

#### Maintenance

Report on equipment performance and behaviour and have suppliers conduct maintenance when necessary

Make sure the installer is Clean Energy Council Accredited

## **System Maintenance**

#### Solar module cleaning:

The array should be installed with a minimum tilt of 10° to allow for self cleaning. If the array is visibly dirty, clean it with water and a non-abrasive material.

#### Cabling check:

Have cabling checked for any loose connections or damage. Always make sure the system is turned off

when checking cabling

#### Mounting system:

Check the mounting system to ensure it's stable.

If you have a tracking system, check the motors and hinges.

#### **Vegetation maintenance:**

Make sure vegetation growth is restricted so it doesn't block the solar system.

Grazing animals may be suitable to keep grass levels low – as long as they can't chew through any cables.





## Part 4: Solar pumping economics



## Life cycle cost (LCC)



## **Cost differences between solar and diesel**

| Criteria           |                          | Solar pumping system                                                                                                                                                                                              | Diesel pumping system                                                                                                                                                                                                                                    |
|--------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capital costs      | Equipment costs          | Equipment includes array, array mounting,<br>system controllers, electric motor/pump,<br>wiring, piping                                                                                                           | Equipment limited to a generator (where applicable), motor/pump and piping                                                                                                                                                                               |
|                    | Installation costs       | Installation includes both pump and piping installation, and array and wiring installation                                                                                                                        | Installation limited to a generator (where applicable), pump and piping installation                                                                                                                                                                     |
| Operating<br>costs | Energy/fuel costs        | None                                                                                                                                                                                                              | Energy costs depend on the size of the pump, how<br>often the pump is used and system efficiencies.<br>Projected price increases should be included.<br>These can represent up to 85% of the lifetime costs<br>of a diesel pump                          |
|                    | Ongoing<br>maintenance   | Maintenance costs are limited to the array (minimal), the pump and the electric motor                                                                                                                             | Scheduled maintenance of the generator/diesel<br>motor, including refuelling, oil changes, checking<br>pressures, cleaning air filters, lubricating parts;<br>pump maintenance also required                                                             |
|                    | Equipment<br>replacement | Solar modules offer a 20- to 25-year<br>performance guarantee to 80-85% output.<br>Solar pumps and controllers offer a warranty<br>ranging from 12 to 24 months, with an<br>expected operating life of five years | Diesel generator would be expected to need<br>replacement every 20,000 hours, on average,<br>between 5,000-50,000 hours, depending on the<br>quality of the engine and how well it has been<br>maintained (AC pumps carry a warranty of 12-24<br>months) |
|                    | Personnel costs          | Limited site visits are required as maintenance is minimal                                                                                                                                                        | Site visits are required for refuelling, starting<br>up/shutting down the generator, and for more<br>extensive maintenance                                                                                                                               |
|                    | Safety risks             | Limited safety risks with the operation of a solar pump                                                                                                                                                           | Safety risks associated with fuel storage and transport; fire risk at pump                                                                                                                                                                               |

## **Comparison of Life Cycle Costs**



## Need to consider the life cycle cost

## Estimated combined investment costs (time, money, etc.)



## This is an indicative example only!

## **Case study**



Sarah Burke – Business Development Manager

## **Case study: Ecotech Energy**



| PUMPING LOAD AND WATER REQUIREMENTS |          |                             |        |  |  |
|-------------------------------------|----------|-----------------------------|--------|--|--|
| Pumping Load                        | 55 kW    | Power Source?               | Diesel |  |  |
| Water Pumped per Hour               | 788 kL   | Diesel Consumption per Hour | 25 L   |  |  |
| Target Annual Pumped                | 2,500 ML |                             |        |  |  |
| Actual Annual Pumped                | 2,048 ML | Variable Speed Drive?       | YES    |  |  |
| Water Storage?                      | NO       | VSD Cut-in (% Pumping Load) | 40%    |  |  |

#### **PUMP OPERATION**

#### This tool runs as follows:

- without water storage: the Solar PV will pump water when there is enough sunlight during irrigation times only

- with water storage: the Solar PV will pump water at anytime there is enough sunlight and fill the storage for irrigation during irrigation times

#### Pumping Months

#### January

January Days per Week February February Days per Week

March

March Days per Week

April

April Days per Week

May May Days per Week

June

June Days per Week

July July Days per Week

suly Days per Week

August Days per Week

September September Days per Week

October

October Days per Week

November November Days per Week

December December Days per Week

| 1 | 5 |
|---|---|
| • | 5 |
| 1 | 5 |
|   | 5 |
|   | 1 |
|   | 2 |
|   | 3 |
|   | 3 |
| 1 | 3 |
| 1 | 3 |
| • | 7 |
| 1 | 7 |
| 1 | 7 |

#### Irrigation Times

January Pumping Start Time 6:00 18:00 January Pumping End Time 6:00 February Pumping Start Time 18:00 February Pumping End Time 6:00 March Pumping Start Time 18:00 March Pumping End Time 7:00 April Pumping Start Time 17:00 April Pumping End Time May Pumping Start Time 7:00 17:00 May Pumping End Time 7:00 June Pumping Start Time 16:00 June Pumping End Time 7:00 July Pumping Start Time July Pumping End Time 16:00 7:00 August Pumping Start Time 17:00 August Pumping End Time 7:00 September Pumping Start Time September Pumping End Time 18:00 6:00 October Pumping Start Time 18:00 October Pumping End Time 6:00 November Pumping Start Time November Pumping End Time 18:00 December Pumping Start Time 6:00 18:00 **December Pumping End Time** 



| SOLAR PV SYSTEM         |                |                              |         |  |
|-------------------------|----------------|------------------------------|---------|--|
|                         | LOCATION       |                              |         |  |
| Postcode                | 4415           |                              |         |  |
| Latitude                | 26.6°S         | Longitude                    | 150.2°E |  |
|                         | FRAME          | WORK                         |         |  |
| Fixed Tilt or Tracking  | Fixed Tilt (N) |                              |         |  |
|                         | SYSTEM         | DETAILS                      |         |  |
| PV System Size (kWp)    | 100            | PV System Annual Degradation | 0.7%    |  |
| PV System Lifetime      | 25 years       | PV System Installation Year  | 2019    |  |
|                         | SYSTEM         | OUTPUT                       |         |  |
| Annual Production (kWh) | 193,785        | Average Daily Output (kWh)   | 531     |  |
|                         | Monthly        | Generation (kWh)             |         |  |
| 20,000                  |                |                              |         |  |
| 18,000                  |                |                              |         |  |
| 16,000                  |                |                              |         |  |
| 14,000                  |                |                              |         |  |
| 12,000                  |                |                              |         |  |
| 10,000                  |                |                              |         |  |
| 8,000                   |                |                              |         |  |
| 6,000                   |                |                              |         |  |
| 4,000                   |                |                              |         |  |
| 2,000                   |                |                              |         |  |
| Jan Feb Mar             | Apr May Jun    | Jul Aug Sep Oct I            | Nov Dec |  |















## **Part 5: More resources**





## Links to more resources

AgInnovators - Solar-powered pumping in agriculture -<u>https://www.aginnovators.org.au/sites/default/files/Solar%20-</u> powered%20pumping%20in%20agriculture.pdf

AgInnovators - Solar Powered Pumping Factsheet -

https://www.aginnovators.org.au/sites/default/files/Solar%20powered%20irrigation%20pumping\_0.pd

NSW Farmers - Why solar stacks up for farmers -

https://www.nswfarmers.org.au/NSWFA/Posts/The Farmer/Innovation/Why solar stacks up for far mers.aspx

Clean Energy Regulator – Small-scale Technology Certificates -<u>http://www.cleanenergyregulator.gov.au/RET/Scheme-participants-and-industry/Agents-and-installers/Small-scale-technology-certificates</u>

Guide to Installing Solar PV for Business and Industry -

www.solaraccreditation.com.au/consumers/purchasing-your-solar-pv-system/solar-pv-guide-forbusinesses.html

Solar Quotes - www.solarquotes.com.au

## **Questions?**

## Luke Christiansen

## luke@2xe.com.au





"Mr. Osborne, may I be excused? My brain is full."



## Thank you