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Acronyms 
Acronym Meaning (see glossary for further details) 

AGDD Accumulated growing degree days 

AHP Analytical hierarchy process 

APSIM ‘Agricultural Production Systems sIMulator’ 

AWAP Australian Water Availability Project 

CP Chill portions 

CCIA Climate Change in Australia 

CCRS Climate Change Research Strategy 

CMEMS Copernicus Marine Environment Monitoring Service 

CMIP5 Coupled Model Intercomparison Project 5 

NSW DPI NSW Department of Primary Industries 

GCM Global climate model 

GDD Growing degree days 

GEBCO General Bathymetric Chart of the Oceans 

HRZ High rainfall zone 

IPCC Intergovernmental Panel on Climate Change 

LLS Local Land Services 

MCA Multi-criteria analysis 

RCP Representative concentration pathways 

SST Sea surface temperature 

SILO ‘Scientific Information for Land Owners’ 

THI Temperature humidity index 

VA Vulnerability assessment 
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Glossary 
Term Explanation 

Adaptive capacity Evaluates the ability of a system or community to respond to and cope 

with the challenges posed by climate change. This includes factors like 

technological capabilities, financial resources, governance structures, 

and human capacity. Higher adaptive capacity enhances resilience and 

reduces vulnerability. 

Biosecurity risk An organism that is an identified risk to the production of one or more 

commodities. 

CCIA Application 

Ready Data 

An ensemble of 8 statistically downscaled global climate models 

selected by CSIRO and the Bureau of Meteorology from the full set of 

CMIP5 models, as being those most appropriate for climate modelling 

in Australia. 

Climate suitability The extent to which climatic conditions satisfy the requirements of 

plant or animal growth without considering other limiting factors (Zhao 

et al., 2016). In the VA Project, this is quantified as a value between 0 

and 1, inclusive. 

Climate variable An individual, measurable aspect of climate for which data have been 

recorded. For example, daily maximum temperature. 

Climate 

vulnerability 

Refers to the degree of susceptibility or sensitivity of a system, 

community, or region to the adverse effects of climate change. It is a 

multifaceted concept encompassing various dimensions that determine 

the potential for harm or disruption caused by climate-related factors. 

The three key components are exposure, sensitivity and adaptive 

capacity (see relevant definitions).  

CMIP5 An archive of global climate models containing simulations from more 

than 40 global climate models. CMIP5 was developed during the 5th 

assessment cycle of the IPCC (2008-2013). Application-ready data 

from its successor, CMIP6, was not available in time for the VA Project. 

Commodity In this report, this term refers to a raw primary industry output which 

was studied by the Vulnerability Assessment Project; it includes 

broadacre and horticultural crops, pine trees, livestock and fish 

species, and pastures. 
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Term Explanation 

Delta downscaling A technique used to resample data from a coarse-resolution global 

climate model at a finer spatial resolution by applying projected 

changes in mean climate from the model to historical climate data 

observed at a higher resolution.  

Downscaling The process by which coarse-resolution global climate model outputs 

are translated into finer resolution climate information, so that they 

better account for regional climatic influences. See ‘delta 

downscaling’, ‘dynamical downscaling’ and ‘statistical downscaling’. 

Dynamical 

downscaling 

A computationally intensive technique which involves running a climate 

model to simulate atmospheric and environmental conditions at fine 

resolution, using a global climate model to provide the large-scale 

boundary conditions. 

Exposure This assesses the extent to which a system or entity is subjected to 

climate change hazards such as rising temperatures, extreme weather 

events, sea-level rise, and altered precipitation patterns. Exposure 

helps identify the geographic and sectoral areas at risk. 

GDA94 The Geocentric Datum of Australia (1994); a static coordinate reference 

for Australia that minimises distortion when depicting the 3-

dimensional surface of the earth on a 2-dimensional plane. 

Module A standardised method used in the VA Project for transforming daily 

climate data into unitless climate suitability. 

Node A grouping of commodities and associated experts within the VA 

Project, based on the type of primary industry. 

Phenophase Key stages in an organism's life cycle, production cycle or 

management stages. 

Radiative forcing The change in the net vertical irradiance at the tropopause due to an 

internal or external change in the forcing of the climate system, such 

as a change in the atmospheric concentration of CO2 or the output of 

the Sun. 

Sensitivity Measures the degree to which a system or community is affected by 

climate-related changes. It considers factors like the level of 

dependence on climate-sensitive resources, infrastructure, and socio-

economic conditions. Highly sensitive systems are more likely to 

experience negative impacts. 
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Term Explanation 

SILO ‘Scientific Information for Land Owners’, a database of Australian 

climate data hosted by the Science and Technology Division of the 

Queensland Government's Department of Environment and Science. 

Statistical 

downscaling 

A downscaling technique in which observed relationships between 

local synoptic situations and the large-scale climate, as represented in 

a coarse-resolution global climate model, are used to build a statistical 

model used to infer local-scale changes from the large-scale changes 

generated by the global climate model. 
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1. Vulnerability Assessment Project

1.1. Climate Change Research Strategy 

The primary industries sector in New South Wales operates a wide variety of production systems 

within diverse landscapes, all the while facing the challenges of a highly variable climate. 

Primary producers manage the daily impacts of climate variability as well as the complexities of 

droughts, floods, storms, bushfires, pests and diseases. To ensure the continued growth of NSW 

primary industries and to safeguard the future of regional communities and those that rely on 

their produce, it is vital that this $23.1 billion sector continues to build resilience and 

adaptability in response to changes in climate. 

Supported by an investment of $29.2 million from the NSW Climate Change Fund, the Primary 

Industries Climate Change Research Strategy (CCRS) invested in project and program areas 

that could support the primary industries sector to adapt to climate change. The Vulnerability 

Assessment (VA) Project received $8 million and has been completed as one of 7 projects within 

the CCRS. 

The Strategy encompassed 3 themes: 

• Energy: providing innovative clean energy solutions including biomass alternatives and
tackling rising electricity costs through efficiency and technology.

• Carbon Opportunities: by improving market access and better understanding the
abatement opportunities available within agriculture.

• Climate Resilience: by testing technology and adaptation options and developing deep
knowledge on the vulnerability of primary industries to climate change.

These themes will enable NSW primary industries to prepare for the challenges and 

opportunities which climate change presents. The results of this research are being used to 

inform government and industry bodies of opportunities for timely, industry-appropriate 

responses to climate change, and provide insights into navigating carbon and other emerging 

markets. The NSW Department of Primary Industries (NSW DPI) is using the results of the 

Strategy to inform forward work programs and policies to support the long-term sustainability 

of agriculture, forestry and fisheries in NSW. 

This report describes the methodology used for the Vulnerability Assessment Project, which sat 

within the Climate Resilience theme of the CCRS. 

1.2. Project Objectives 

Primary producers in NSW are increasingly being impacted by climate change. Primary 

industries are critical to ensuring food security for Australia, and, thus, developing viable 

pathways to climate change adaptation for primary industries is becoming increasingly pressing. 
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There is a driving need for comprehensive information across the range of primary industries to 

inform effective policy and planning at a state and regional level. Integrative, cross-industry 

analysis of vulnerability to climate change across the primary sector can highlight future risks 

and opportunities and identify where an incremental or transformational adaptation might be 

necessary. 

The Vulnerability Assessment Project is designed to respond to the following two objectives: 

• To understand the vulnerability of primary industries in NSW to climate change and
associated impacts.

• To provide evidence of the value of adaptation to reduce impacts on primary industries
for NSW.

The first of these objectives can be understood to relate to ‘climate suitability’, generally 

regarding yield, for commodities, but also quality, which was studied separately; the second 

relates to ‘climate adaptation’. They are both are underpinned by a need to provide better 

information and insights into the impacts of climate change across a range of primary industries. 

This will allow the identification of those industries most in need of adaptation strategies, and 

those industries where opportunities to be capitalised on may arise. A need also exists for a 

comparable approach across primary industries utilising shared resources, such as land and 

water, to assist in creating broad and connected planning and policy. 

To achieve the project’s objectives, the VA Project created a standardised framework for model 

development, spatial analysis and climate impact assessments. This framework was 

consistently applied across all commodities and biosecurity risks that were assessed by the 

project. The following sections of this document provide an in-depth explanation of the 

framework and the application of the framework throughout the VA Project. 

Figure 1: Components of a climate vulnerability assessment modified from a commonly used IPCC 
framework for assessing vulnerability to climate change (Ionescu et al., 2009)  
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A climate vulnerability assessment is used for assessing the potential impacts of climate 

change on an organism or system. The outline of such an assessment is shown in Figure 1. The 

exposure of a commodity or biosecurity risk to climate and the sensitivity of the organism to 

climate changes are combined to evaluate the potential impacts of those changes. By combining 

these aspects of climate and production, the vulnerability of the organism can be assessed. 

The adoption of a consistent approach across multiple organisms or systems allows for 

comparisons to be made about their relative vulnerabilities to climate change, and about the 

interactions between them at different times of the year or at crucial stages of their growth or 

development. Combined with information and guidance from government and industry, the 

vulnerability assessment can help to identify priority areas for action and potential adaptations 

for alleviating climate change impacts. An important component of a vulnerability assessment is 

the selection of a suitability methodology which ensures this consistency. The VA Project has 

devised principles to underpin its methodology selection. These guiding principles are as 

follows: 

• Consistency for comparability: the consistent application of a methodology that enables
comparability between commodities and integration of biosecurity risks.

• Usability: a methodology that can be utilised in different areas of research, industry or
government that produces results that can be readily applied to support planning and
policy decision-making.

• Flexibility: a methodology whose components can be updated and expanded without
significant additional resources, and which is responsive to feedback.

• Credibility: a credible methodology for policy and planning with the aim of supporting
decision-making. Credible methods are those that have been peer-reviewed, effectively
applied elsewhere and are targeted to the research questions and objectives.

• Scientific depth and detail: a methodology with sufficient scientific depth and detail to
provide confidence in the results. This provides a foundation for planning and policy
decision-making, integrating scientific knowledge and expertise.

1.3.  Project Scope 

1.3.1. Selection of commodities and biosecurity risks 

The VA Project investigated a wide range of primary industry commodities and related 

biosecurity risks for which climate variables impose limiting factors on growing suitability and 

geographical extent. It settled on 28 commodities and 14 biosecurity risks, split across 6 broad 

industry categories, referred to as ‘nodes’ (see Table 1). The commodities were selected based 

on economic value to NSW, size of the industry in NSW or the commodity’s importance as an 

emerging or growing industry for NSW. Each node aimed to ensure that a mix of industries were 

selected. Consideration was given to including some emerging commodities and biosecurity 

risks that are expected to become more prominent, as well as to ensuring a geographical spread 



12 

of assessed industries across the state. Alongside economic value and industry size, the 

availability of expert knowledge within NSW DPI was also a necessary for selection of a 

commodity or biosecurity risk for the VA Project. It was impractical to cover all primary 

industries in NSW, and additional commodities and biosecurity risks could be studied using the 

methods described in this report. 

The inclusions in the biosecurity node were selected based on risk, not commodity. The 

biosecurity node selected a mixture of risks representing a range of pests and diseases relevant 

to the terrestrial commodities where these risks were deemed to be of considerable concern. 

The risks selected for the project were based on their presence as endemic to NSW, except for 

oriental fruit fly and stem rust, included as exotic species test cases, and serpentine leafminer, 

added after recent incursion led to it becoming established in NSW. With further resourcing, 

this approach could be expanded to cover other endemic risks to primary industries, including 

marine pests and other exotic species not yet detected in NSW or Australia. 

Table 1: List of the primary industry commodities and biosecurity risks studied by the VA Project. Notes: (a) 

exotic biosecurity risks not yet found in NSW; (b) eradication ongoing in NSW; (c) biosecurity risk new to 

NSW (an incursion occurred during the VA Project); (d) biosecurity risk not currently found in 

NSW (most severe epidemic in Australia was in 1973). *results to be released in late 2024. 

Horticulture & 

Viticulture 

Broadacre 

Cropping 

Forestry Extensive 

Livestock 

Marine Fisheries Biosecurity Risks 

 Almond
 Blueberry
 Cherry
 Citrus
 Macadamia
 Walnut
 Wine grapes

 Chickpea
 Dryland and

irrigated wheat
 Dryland barley
 Dryland canola
 Irrigated cotton
 Irrigated

lucerne
 Irrigated maize
 Irrigated rice
 Lupin

 Radiata pine  Cattle
 Sheep
 High rainfall zone 

grazing systems
 Mixed cropping

zone grazing
systems
 Rangeland

grazing systems

 Bonito
 Dolphinfish
 Kingfish
 Spanish

mackerel
 Spotted

mackerel

 Buffalo fly

 Oriental fruit fly(a)

 Parthenium weed(b)

 Queensland fruit fly
 Sclerotinia stem rot
 Serpentine

leafminer(c)

 Serrated tussock
 Verticillium wilt

 Wheat stem rust(d)

 Wheat stripe rust
 Barber’s pole worm*
 Biting midge*
 Blowfly*
 Cattle tick*
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1.3.2. Selection of future greenhouse gas emissions scenarios 

To assess the future climate suitability of the selected commodities and biosecurity risks, two 

scenarios were used which estimated the climate's response to sets of potential future 

greenhouse gas and aerosol emissions, and land-use scenarios, consistent with alternative 

future socio-economic assumptions (Collins et al., 2013). These emissions scenarios, known as 

‘representative concentration pathways’ (RCPs), describe possible futures in terms of radiative 

forcing, long-term atmospheric CO2 levels and the trajectory of those levels over time, based on 

anthropogenic greenhouse gas emissions (van Vuuren et al., 2011). The two scenarios selected 

for the VA Project are: 

• RCP4.5: an intermediate stabilisation pathway where radiative forcing is limited to
approximately 4.5 Wm−2 in 2100, and emissions peak around 2040 before declining.

• RCP8.5: a high emissions pathway that leads to radiative forcing of greater than 8.5
Wm−2 in 2100, a ‘worst-case scenario’ pathway in which emissions continue to rise
throughout the 21st century.

The VA Project considered these two scenarios to ensure the inclusion of a range of future 

climatic conditions. A low emissions scenario, RCP2.6, which represents the most efficient and 

effective mitigation scenario (keeping the global average temperature rise below 2°C), was not 

considered for the VA Project. This scenario is not consistent with projections based on current 

global policies. Another intermediate scenario, RCP6.0, was not considered because the 

scenario it describes falls within the range represented by RCP4.5 and RCP8.5. Additionally, 

projection data for RCP2.6 and RCP6.0 were not available for all global climate models (GCMs) 

contained within the climate dataset used by the VA Project (described below). 

Greenhouse gas emissions have been tracking close to those described by RCP8.5 (Schwalm et 

al., 2020), and current estimates (United Nations Environment Programme, 2023) predict an 

increase in mean global temperature above pre-industrial levels of 2.5-2.9°C, consistent with 

RCP6.0 (1.4-3.1°C increase) and RCP8.5 (2.6-4.8°C increase) but mostly outside the range for 

RCP4.5 (1.1-2.6°C increase) (IPCC, 2013). 

1.3.3. Selection of mid-century future time point 

The decision was made to centre the study on 2050. This was driven by planning and policy 

relevance and by the need to base assessments on climatic trends that require decadal periods 

to discern. Timeframes earlier than 2050 would include data that effectively includes the 

present day and so would not provide strategic insight into potential change. Timeframes 

beyond 2050 were not selected as they would show stronger climate change trends compared 

with climate variability. Additionally, this timeframe would be less relevant to policy decision-

making and industry strategic planning, which rarely extend beyond a 30-year time horizon. 

While the Bureau of Meteorology and others recommend using two future 30-year periods to 

consider both possible near-term climatic conditions and conditions further out from the present 
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day, the VA Project determined to use just one future period. This decision was made in order 

that planning insights offered to policymakers would pertain to a foreseeable and relatable 

future, reducing the chance of dismissing any timeframe extending significantly beyond 2050 

as irrelevant or inconsequential. However, given that the climate datasets used in the VA Project 

include other future periods, the modelling could be replicated for other periods of interest. 

1.3.4. Selection and preparation of climate data 

1.3.4.1. Terrestrial climate data 

The VA Project sourced terrestrial1 historical climate data from SILO2, an Australian climate 

database constructed from observational data from the Australian Bureau of Meteorology 

(Jeffrey et al., 2001), and used for historical calibration of models. The chosen historical baseline 

period was 1970-2019. This timeframe was selected to encompass the last 50 years of climate 

observations (as at early 2020). It also includes the 1981-2010 period adopted by the global 

climate models used in the VA Project (described below) to validate their future climate 

projections. A long historical baseline period also minimises the influence of natural variability 

on observed climate averages, while revealing long-term trends. The additional 10 years either 

side of 1981-2010 provide useful context for experts when applying their experience and 

knowledge of climate impacts on primary production commodities and biosecurity risks. The 

data were also aggregated by the VA Project from a spatial resolution of 0.05° to 0.2°, used to 

facilitate rapid model prototyping and development. 

The future projection dataset used in the VA Project was the ‘Climate Change in Australia 

(CCIA): Application Ready Data’ (CSIRO and Bureau of Meteorology 2015): this dataset is an 

ensemble of 8 statistically downscaled global climate models (GCMs) for RCP4.5 and RCP8.5, 

for several future periods, at 0.05° spatial resolution. These GCMs were selected by CSIRO and 

the Bureau of Meteorology from the full set of CMIP5 GCMs as being those most appropriate for 

climate modelling in Australia. Their rationale for the selection of each model is listed in Table 2; 

use of these GCMs allowed the VA Project to consider most of the possible climate futures 

facing NSW. Following consultation and advice from the Bureau of Meteorology, and in line with 

common practice, the VA Project has focused on the 30 years spanning 2036-2065, centred on 

2050. 

The downscaled GCMs in the CCIA dataset are based on historical baseline climate data from 

the Bureau of Meteorology's Australian Water Availability Project (AWAP), using observational 

data for the 30 years spanning 1981-2010 on a 0.05° grid across NSW. 

1 ‘Terrestrial’ refers to climate data associated with the land surface of the Earth. 

2 https://www.longpaddock.qld.gov.au/silo/ 
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The VA Project identified the most important climate variables for assessing climate suitability 

for the selected commodities and biosecurity risks. They were temperature, rainfall, relative 

humidity and solar radiation, and these variables were included as the minimum, maximum or 

mean daily value, the mean monthly value or the mean value calculated across a phenophase or 

life cycle stage of interest. The mean temperature was calculated as the average of the 

minimum and maximum temperatures. Rainfall was included as the daily value or the cumulative 

sum over a given period. Several other derived climate variables, such as effective rainfall, were 

calculated from the above variables. Further information on the climate variables and the 

derived climate variables can be found in Section 2.3.3. 
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Table 2: Details of Climate Change in Australia's selected CMIP5 models and their notes on reasons for 
inclusion in the CCIA ‘Application Ready Data’ (adapted from the CCIA technical report (CSIRO and Bureau 
of Meteorology, 2015)). 

Model Institute 
Atmosphere 
resolution (°) 

[km] 

Ocean 
resolution 

(°) 

Climate 
future 

Notes 

ACCESS1.0 
CSIRO-BOM, 
Australia 

1.9×1.2 
[210×130] 

1.0 x 1.0 
Maximum 
consensus for 
many regions. 

This model exhibited a high 
skill score for historical climate. 

CESM1-
CAM5 

NSF-DOE-
NCAR, USA 

1.2×0.9 
[130×100] 

1.1 x 0.6 

Hotter and 
wetter, or 
hotter and 
least drying. 

This model was representative 
of a low change in an index of 
the Southern Annular Mode 
(per degree of global warming). 

CNRM-CM5 
CNRM-
CERFACS, 
France 

1.4×1.4 
[155×155] 

1.0 x 0.8 

Hot/wet end 
of the range in 
southern 
Australia. 

This model was representative 
of low warming/dry sea surface 
temperature (SST) modes 
described in Watterson (2012) 
(Sec. 3.6). It represents 
extreme El Niño in CMIP5 
evaluations (see Cai et al., 
2014). 

GFDL-
ESM2M 

NOAA, 
GFDL, USA 

2.5×2.0 
[275×220] 

1.0 x 1.0 
Hotter and 
drier. 

This model represented the 
hot/dry SST mode described in 
Watterson (2012). It represents 
extreme El Niño in CMIP5 
evaluations (see Cai et al., 
2014). 

HadGEM2-
CC 

MOHC, UK 
1.9×1.2 
[210×130] 

1.0 x 1.0 
Maximum 
consensus for 
many regions. 

This model has a good 
representation of extreme El 
Niño in CMIP5 evaluations (see 
Cai et al., 2014). 

CanESM2 
CCCMA, 
Canada 

2.8×2.8 
[310×310] 

1.4 x 0.9 

This model was representative 
of the hot/wet SST modes 
described in Watterson (2012). 
It has a high skill score for 
historical climate and increases 
the diversity of climate futures 
represented (Knutti et al., 2013). 
It represents extreme El Niño in 
CMIP5 evaluations (see Cai et 
al., 2014). 

MIROC5 
JAMSTEC, 
Japan 

1.4×1.4 
[155×155] 

1.6 x 1.4 
Low warming, 
wetter. 

This model represented a 
greater change in an index of 
the Southern Annular Mode 
(per degree of global warming). 
It represents extreme El Niño in 
CMIP5 evaluations (see Cai et 
al., 2014). 

NorESM1-M 
NCC, 
Norway 

2.5×1.9 
[275×210] 

1.1 x 0.6 
Low warming, 
wettest. 

This model was representative 
of the low warming/wet sea 
surface temperature mode 
described in Watterson (2012). 
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1.3.4.2. Marine data 

Climate projection data for the marine environment was not available as part of CSIRO's 

‘Climate Change in Australia Application Ready Data’. To maximise compatibility with the 

terrestrial dataset, the VA Project prepared marine future climate projection data for RCP4.5 

and RCP8.5 using 5 GCMs, which were selected according to two requirements:  

• The GCM is included in the CCIA dataset for terrestrial climate variables.
• The GCM provides data for the 3 climate variables relevant to marine species habitat

suitability.

Details of the 5 GCMs are given in Table 3; each model was downscaled to a spatial resolution of 

0.05 degrees. The chosen 20-year future projection period centred on 2050, spanning 2040-

2059, and the historical baseline period spanned 1993-2012. This historical baseline period was 

selected as data from satellite observations for a key variable of interest, ocean current 

strength, were not available before 1993, and thus, 20-year historical and future periods have 

been used for marine data. The VA Project’s fisheries models used 3 marine climate variables: 

sea surface temperature, sea surface height and ocean current strength (also known as ‘eddy 

kinetic energy’). Observed historical data for each variable were obtained from the Copernicus 

Marine Environment Monitoring Service3 (CMEMS). 

Table 3: Selected CMIP5 GCMs used to support projections of marine species habitat suitability off south-
eastern Australia. Both RCP4.5 and 8.5 emission scenarios were used from each model. 

Model Institution Native ocean resolution (°) 

ACCESS1.0 CSIRO-BOM, Australia 1.0 × 1.0 

CNRM-CM5 CNRM-CERFACS, France 1.0 × 0.8 

GFDL-ESM2M GFDL, NOAA, USA 1.0 × 1.0 

HadGEM2-CC MOHC, UK 1.0 × 1.0 

MIROC5 JAMSTEC, Japan 1.6 × 1.4 

The fisheries models also included two structural habitat variables to account for the influence 

of seascape topography on environmental suitability for harvested marine species: seafloor 

depth and an index of vertical seascape relief. These variables are static and remain fixed over 

durations much longer than the 30-year period used for historical analyses and future 

projections in the VA Project. The seascape topography data were obtained from the General 

Bathymetric Chart of the Oceans4 (GEBCO) for 2020. 

3 https://marine.copernicus.eu 

4 https://www.gebco.net 

https://marine.copernicus.eu/
https://www.gebco.net/
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1.3.4.3. Downscaling of marine GCM data 

The coarse spatial resolution of GCM data (~1 degree) challenges its utility for projecting 

species' responses to climate change (Drenkard et al., 2021), particularly in coastal marine 

environments where species distributions are structured at finer, kilometre-scale, spatial 

resolutions. Therefore, the widely used delta change factor method (see, for example, Morley et 

al., 2018; Navarro-Racines et al., 2020; von Hammerstein et al., 2022), also known as ‘delta 

downscaling’ (CSIRO and Bureau of Meteorology, 2015) was used to downscale sea surface 

temperature, sea surface height and eddy kinetic energy data to a common 0.05-degree spatial 

resolution throughout the study region. Delta downscaling was selected as it has proven utility 

for providing high-resolution mean climatic conditions over decadal periods for climate impact 

studies (Navarro-Racines et al., 2020). It also provides an element of model bias correction, since 

the high-resolution observational data contains empirical information on small-scale variations 

that are factored into the final product (Pourmoktharian et al., 2016). Delta downscaling is a 

relatively simple method compared to alternative downscaling techniques such as dynamical 

and statistical downscaling (Drenkard et al., 2021) and is therefore well-suited for rapid climate 

change impact assessments of species. 

The marine downscaling process involved 5 steps: 

1. Remapping the curvilinear source GCM data to a global 1° rectilinear grid using the second-
order conservative algorithm (remapcon2) in Climate Data Operators (Schulzweida, 2021).

2. Infilling missing data adjacent to the continental coast for datasets describing zonal (U) and
meridional (V) flows using thin-plated splines interpolation in R (implemented in the fields
package for R). This method has been shown to perform well for interpolating climate data
(Jeffery et al., 2001).

3. Calculating the difference (that is, delta value) between seasonally aggregated data for the
period 2040 to 2059 and a modelled historical baseline period encompassing 1993 to 2012
for each climate variable, GCM and RCP scenario.

4. Disaggregating delta value matrices from their native model resolution (~1°) to the finer
resolution of observed ocean data (that is, 0.05°) using bilinear interpolation.

5. Adding delta values to an observed seasonal climatology for each climate variable used in
the VA climate suitability models, encompassing 1993-2012.

This method produced future ocean data downscaled to a common 0.05° resolution for 2040-

2059, required to facilitate projections of species' habitat suitability under future emissions 

scenarios. 

1.3.5. Selection of modelling approach 

Climate suitability is defined as the extent to which climatic conditions satisfy the requirements 

of plant or animal growth without considering other limiting factors (Zhao et al., 2016). The most 

common methods for modelling climate suitability for Australian primary industries (Darbyshire 
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et al. 2022) are biophysical process models, such as APSIM (Holzworth et al., 2014) and 

GrassGro (Moore and Herrmann, 2023), and correlative climate niche models, such as CLIMEX 

(Sutherst et al., 2007) and MaxEnt (Phillips et al., 2006). For several commodities and biosecurity 

risks assessed by the VA Project, including wheat, barley and Queensland fruit fly, such 

commodity- or species-specific models do exist. However, differences in model design and 

assumptions mean that cross-commodity comparisons are hampered: differences in outputs 

may be due to differences in the production model rather than meaningful impacts from climate 

change. Importantly, there are no existing, or no validated, biophysical process-based models 

for many of the commodities and biosecurity risks of interest to primary industries in NSW. 

The VA Project required a modelling approach that could be consistently applied to all 

commodities and biosecurity risks to produce comparable outputs. To achieve the VA Project’s 

objectives, a modelling approach called ‘multi-criteria analysis’ (MCA) was selected. MCA 

models allow information from various sources to be integrated to assess climate suitability, 

which can then be applied to historical data and future climate projections for NSW (Figure 2). 

The result is a spatial assessment of the climate suitability of each commodity or biosecurity 

risk. 

Figure 2: The VA Project developed MCA models of climate suitability for multiple commodities and 
biosecurity risks. The MCA model represents the sensitivity of a commodity or biosecurity risk to climate, 
while the climate data describes the spatial patterns of exposure to optimal or inadequate climatic 
conditions. Climate suitability is calculated across NSW by applying the MCA model to historical climate 
data and future climate projections. 
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MCA models have many characteristics that make them ideal for modelling climate suitability 

for the VA Project, including: 

• The ability to integrate multiple descriptors (i.e., climatic variables) of overarching climate
suitability.

• The ability to incorporate a synthesis of research data and expert opinion.
• The ability to explicitly account for climatic risks to production.
• MCA model descriptions are transparent and easily understandable by industry experts.
• Climatic drivers of MCA model outputs are obvious compared with biophysical process

models and niche-based models, in which model outputs may be opaque.
• When compared with sophisticated biophysical models, MCA models are straightforward to

update with new knowledge or data. Biophysical models can take substantial time and
resources to develop and modify.

• Multicriteria analysis is a well-developed and widely used modelling approach across a wide
range of disciplines.

The ability of MCA models to incorporate potentially conflicting sources of information allows 

research data to be combined with expert knowledge into models in a transparent and easily 

understood manner (Caubel et al., 2015; Romeijn et al., 2016). The MCA models used in the VA 

Project were designed to capture the key climatic variables relating to the environmental 

requirements for a commodity to successfully contribute to industry, including survival, growth 

and reproduction, or for the growth and survival of a biosecurity risk. The MCA models take the 

form of hierarchical structures, wherein each MCA model element is assigned a weighting: an 

example of this structure is shown in Figure 4. This structure allows the influence of competing 

variables to be integrated into an overall climate suitability value on which to base decisions or 

analyses (Jankowski and Richard, 1994). Climate suitability can be derived at any level of the 

MCA model structure, facilitating the assessment of the role of specific climate variables in 

climate impacts. 

1.3.5.1. Vulnerability Assessment Framework 

The VA Project used an MCA modelling approach, which combines data from published research 

and expert knowledge. This approach is particularly useful when describing under-researched 

commodities or biosecurity risks. A key feature of the project is that all MCA models were 

developed consistently, and their climate impact assessments all used the same historical and 

future climate projection data, which enables a direct comparison of the results. This follows the 

guiding principles for the VA Project (Section1.2), providing a consistent, comparable approach 

across industries, maintaining a state-wide focus and transparent reporting and communications 

to address strategic industry planning and policy goals. 
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1.3.5.2. Considerations and limitations to climate suitability modelling 

The MCA models developed by the VA Project have only been constructed to assess 

vulnerability to future climatic conditions. The models do not account for soils, topography or 

other biophysical parameters, although analysis of some seafloor data was included in the 

fisheries MCA models. Socio-economic factors such as proximity to infrastructure, workforce 

availability, or market access were also not included in the MCA models. Water demand was 

modelled separately to climate suitability for irrigated commodities, but no assessment of 

potential future water availability has been undertaken. All agricultural production MCA models 

assume that current ‘best practice’ management is employed. 

The VA Project made assumptions relating to the spatial resolution of the GCMs included in the 

CCIA climate data. Specifically, the VA Project limited its modelling to the 0.05° spatial and 1-

day temporal resolution of the CCIA dataset. In addition, future projections were not provided by 

the CCIA dataset for climate variables with high spatiotemporal variability, such as wind, 

snowfall and hail, and so these variables were excluded from our modelling. Relative humidity 

was only included in models as an average over periods of a month or longer. 

Extreme weather events were also excluded from the climate suitability modelling. These 

events include intense rainfall episodes, heatwaves and cold snaps. The impact of complex 

climatic events was also unable to be modelled, including intense storms, cyclones and East 

Coast Lows, drought, floods and other phenomena such as bushfires. These events are a result 

of complex interactions between multiple climatic and environmental factors, often including a 

series of linked climatic events and conditions. Such factors are being researched (see, for 

example, Dowdy et al. (2019), Bruyère (2022), Donat et al. (2023) and Trascasa-Castro et al. 

(2023)). 

In addition to the above exclusions, temporal sequences (for example, the number of 

consecutive days above a certain maximum temperature) were omitted from climate suitability 

modelling: future projections of climate variables derived by delta or statistical downscaling 

essentially retain historical daily patterns that cannot be meaningfully carried over into the 

future. 

These MCA models primarily focused on the response of commodities and biosecurity risks to 

changes in average climatic conditions. However, in some situations, the exclusions mentioned 

above may limit the power of an MCA model to capture the actual effects of climate on 

agricultural production for a specific area. Future work that incorporates dynamically 

downscaled climate projection data could provide an improved capacity for describing such 

phenomena. 

Additional assumptions and exclusions made for individual commodities and biosecurity risks 

will be detailed in upcoming reports.
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2. VA Project Approach to MCA Modelling
A main objective of the VA Project methodology was to provide a flexible and consistent 

approach to describing the key elements of climate suitability. 

The following principles were developed to help build the MCA models and to maintain 

consistency in the development of models across the VA Project:  

• Develop the MCA model with a hierarchical structure around the key life cycle stages (also
referred to as phenological phases, production phases or management stages; see Section
2.3.1 for further details).

• Select the most appropriate climate variables by considering what best aligns with the
available knowledge of the commodity or biosecurity risk's climate suitability.

• Apply a modular approach to MCA model construction based on consistent methods for
transforming climate data to climate suitability (see Section 2.3).

• Provide a standardised set of spatial outputs for all MCA models, with additional
visualisations to support more detailed analyses.

The development of each MCA model was underpinned by applying available scientific 

knowledge when drafting the MCA model structure. During the literature review and MCA 

model-building phases, knowledge gaps often raised barriers to MCA model design. More 

evidence regarding key life cycle stages and climate variables was sometimes needed to allow 

their inclusion in the MCA model. In the absence of scientific knowledge, data exploration and 

expert knowledge were used to provide evidence and allow the draft MCA models to be revised. 

The VA Project has benefited from effective and extensive internal collaboration across NSW 

DPI. Each commodity or biosecurity risk was assigned to an internal NSW DPI expert who 

collaborated with the core VA Project team to achieve broad cross-industry representation. 

2.1.  Key Steps 

To apply the MCA model approach in the VA Project, several key steps were taken for each 

commodity and biosecurity risk (Figure 3). These steps show the iterative process of MCA model 

development, utilising considerable expert support and the integration of expert knowledge. 
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Figure 3: Key steps in the Vulnerability Assessment Project's framework process, developed to assess the 
potential impacts of future climate change on primary industries and biosecurity risks across NSW.

Literature
Review

• Capture in the review 'What climate variables influence the commodity's growth or the
biosecurity risk's survival?'

• Capture in the review 'How sensitive is the commodity or biosecurity risk to each
climate variable identified?'

Draft MCA
Model

• Determine the MCA model hierarchy of key life cycle stages and their dates

• Select the climate variables, categories and modules for each level in the MCA model

• Draft an MCA model for the commodity or biosecurity risk

Expert
Review

• Seek feedback on the draft MCA model in a focus group meeting with 2-6 experts

• Ask the experts to weight the importance of the climate variables and phases using
the AHP process

• Incorporate expert feedback into the MCA model

Historical
Analysis

• Test and refine the MCA model using historical climate data

• Seek feedback on historical climate suitability across NSW and iterate analysis if
further changes are required

Expert
Review

• Prepare a report on the MCA model's historical output and seek expert feedback

• Seek expert endorsement of the MCA model and historical climate suitability

Future
Projections

• Apply the MCA model to future climate projection data to produce future climate
suitability outputs

• Assess the outputs and evaluate the future climate change impacts on the
commodity or biosecurity risk

Impact
Assessment

• Identify the key future climate vulnerabilities and opportunities

• Produce a Climate Impact Asssessment report for the commodity or biosecurity risk

Integration

• Integrate water demand and climate suitability outputs, where suitable

• Integrate biosecurity risk and commodity outputs, where suitable

Expert
Review

• Present key findings from the Climate Impact Assessment to the experts

• Discuss key adaptation or management strategies

External
Engagement

• Disseminate findings to industry and policymakers in a clear and concise way

• Engage with stakeholders to understand how adaptation or management
strategies could mitigate future impacts of climate change
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2.2.  Literature Review 

The literature review focused on capturing an overview of 'Which climate variables influence 

each commodity or biosecurity risk?' and 'How sensitive is the commodity or biosecurity risk to 

each climate variable identified?'. 

The literature review was designed to extract the information needed to design and develop an 

MCA model. The 3 critical sections within the review were:  

• Describing the life stages or phenology: the life stages, or phenophases, of the
commodity or biosecurity risk were identified, and each stage's function was summarised.

• Identifying the key climate variables: the influencing climate variables (for example,
daily rainfall, maximum daily temperature, or a combination of two variables, see Section
3.3.3) for each stage were identified. The review additionally captured what was known
about optimal, sub-optimal or inadequate climatic conditions for the commodity's phases.

• Identifying the knowledge gaps: significant gaps in the literature were identified, and
notes were taken of stages or variables where the required information could not be
found.

After completing the literature review, the knowledge was transformed to create a draft (or 

‘working’) MCA model for the commodity or biosecurity risk.  

2.3.  Building the MCA Model 

The details of MCA model development are described in the following sections. An example of 

an MCA model is shown in Figure 4. 

Figure 4: An example of a MCA model, showing the hierarchical structure and model components. 
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2.3.1. Developing the MCA model structure 

The MCA models in the VA Project are comprised of a hierarchy of levels describing the 

commodity or biosecurity risk, its production and management phases and life cycle stages, 

together referred to as phenophases in this report. The model relates each phenophase to the 

climate variables that affect it. Construction of the MCA model structure and parameters 

involves determining those levels, the climate variables which influence each level, and the 

various parameters of those levels (categories, thresholds, ratings and weightings for the 

phenophases; see below). 

2.3.1.1. MCA model levels 

The knowledge captured by the literature review was used to develop the levels defining each 

MCA model‘s hierarchy. For most models, the levels were arranged as follows: 

• The top level specified the commodity or biosecurity risk.
• The next level contains the phenophases identified as climate-sensitive by the literature

review.
• The level below the phenophases contains modules which describe the effects of climate

variables identified as important for each phenophase.

The phenophases for each MCA model are defined according to the production phases, life 

cycle stages or management stages of the commodity or biosecurity risk. These phenophases 

are specified by either fixed calendar dates or, in the case of dynamic phenology, thermal time 

thresholds. The duration of phenophases varies between species and between management 

systems (some life cycle stages lasting less than a week were combined into a single 

phenophase). After the phenophases were determined, the influence of climate on the 

commodity or biosecurity risk during each phase was taken from the literature and expert 

knowledge, and the specific climate variables to be used decided. The phenophases were 

assigned relative weightings, summing to 1, reflecting the importance of each phenophase to 

the overall success of the commodity or biosecurity risk. A focus group of experts assigned 

these weightings, and the procedure for developing weightings is described in Section 2.4.1. 

In some cases, using life cycle stages and associated dates or thermal time triggers did not 

represent the organism’s growth and survival very well. Examples of this arise for biosecurity 

pests, whose life cycle stages occur continuously and simultaneously. In these cases, the MCA 

models were run monthly or seasonally, with the phenophases assessed on these timescales by 

evaluating the MCA model using monthly or seasonal climate data. 

• Monthly: monthly outputs capture the influence of climate in any given month on the
individual phenophases. These MCA models simultaneously assess the climate suitability
month by month for all life stages or production systems. Monthly data was used for
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biosecurity risks, where the life cycle stages can last from a few days to weeks. It is also 
appropriate for livestock production systems such as those used in the dairy industry, 
where calving can occur in any month of the year. 

• Seasonal: seasonal outputs capture the influence of climate in any given season on the
individual phases and allow capture of any potential changes in the seasonal dynamics.
As with monthly MCA models, seasonal MCA models simultaneously assess climate
suitability for all phenophases.

2.3.1.2. MCA model ratings 

In the lowest level of the MCA models, modules are assigned to each phenophase which specify 

the set of climate variables affecting that phenophase. The modules for each phenophase are 

assigned relative weightings (summing to 1), reflecting the importance of each climate variable 

to the phase: the procedure for developing weightings is described in Section 2.4.1.  The climate 

variables within each module are defined by well-defined ranges, or ‘categories’, of the climate 

variable. These categories describe the optimal, sub-optimal or inadequate conditions of the 

climate variable for the commodity (see Figure 6), using ‘ratings’ between 0 and 1 which are 

assigned to each category. 

Figure 5: Rating system of MCA model where 0 = inadequate conditions, and 1 = optimal conditions. 

2.3.2. Calculating climate suitability 

The MCA models described are not designed to be yield-estimating models per se. Rather, they 

calculate climate suitability to demonstrate where a commodity or biosecurity risk is most likely 

to be found based on climatic conditions. Climate suitability is defined as the extent to which 

climatic conditions satisfy the requirements of plant or animal growth without considering other 

limiting factors (Zhao et al., 2016). 

MCA model ratings define normalisation functions that describe key relationships between 

organisms and climate variables. These functions assign unitless climate suitability values 

between 0 and 1 to binned climate data (for example, temperature ranges). This results in a step 

function for each MCA model element that describes climatic conditions ranging from 

inadequate to optimal. An example of a climate suitability rating function for daily mean 

temperature is shown in Figure 8. 
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Figure 6: An example of a climate suitability rating function. Daily mean temperatures are transformed into 
values between 0 and 1 for each temperature range, which are 5°C wide in this example. 

The influences of multiple aspects of climate on the organism (as reflected by these ratings) are 

then combined in a weighted linear combination to create a composite index of climate 

suitability (following Holzkämper et al. (2013) and Caubel et al. (2015)). 

Figure 7: An example MCA model, the highlighted boxes are used in the example calculation of climate 
suitability within the main text. 
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Each pixel on the map of NSW falls within a category of each branch of the MCA model each 

day. An example of the climate suitability index calculation follows.  Consider a pixel whose 

weather observations over one growing season fall into the boxes highlighted in pink in Figure 9. 

The calculation of the overall climate suitability for that pixel would be: 

Phenophase 1 (1 January to 15 March, for example) 
Tmin (Days < -2°C): 0.6 x 0.25 = 0.15  
Tmean: 0.1 x 0.75 = 0.075 
Phenophase 1 Suitability = 0.15 + 0.075 = 0.225 (Low Suitability) 
Phenophase 1 Contribution to Overall = (0.15 + 0.075) x 0.2 = 0.045 

Phenophase 2 (16 March to 22 April, for example) 
Tmax (Days > 32°C): 0.8 x 1 = 0.8 
Phenophase 2 Suitability = 0.8 (Very High Suitability) 
Phenophase 2 Contribution to Overall = 0.8 x 0.3 = 0.24 

Phenophase 3 (23 April to 1 June, for example) 
Tmin (Days < 0°C): 1 x 0.7 = 0.7 
Tmean: 0.2 x 0.3 = 0.06 
Phenophase 3 Suitability = 0.7 + 0.06 = 0.76 (High Suitability) 
Phenophase 3 Contribution = (0.7 + 0.06) x 0.5 = 0.38 

Overall Pixel Value (climate suitability) = 0.045 + 0.24 + 0.38 = 0.665 

The spatial calculation of historical and future climate suitability from climate data using the 

finalised MCA models was implemented in R (R Core Team, 2023). Raster reclassification was 

used to transform climate data, according to the rating parameters defined in each MCA model, 

and the resulting rasters were aggregated by weighted linear combination, according to their 

assigned weightings in the MCA model. Most calculations were performed using the raster, 

terra, sp and rgeos R packages (Bivand et al., 2017; Hijmans et al., 2015; Hijmans et al., 2022; 

Pebesma et al., 2005), and figures were produced using the ggplot2 and rasterVis packages 

(Lamigueiro et al., 2022; Wickham et al., 2016). 

2.3.3. Climate variables 

The most common climate variables used in the MCA models were minimum, maximum and 

mean daily temperature and rainfall. Daily relative humidity was also used in some MCA models. 

These variables appeared in the MCA models as the raw daily value, the mean monthly value or 

the mean value calculated across a phenophase or life cycle stage of interest. Mean 

temperature was calculated as the average of the minimum and maximum temperatures. 

Rainfall was included as the cumulative sum over a given period or as the daily value, depending 

on the commodity. Various other derived climate variables were included in some MCA models; 

details and definitions are given in Table 4. 
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Table 4: Terrestrial climate variables used in terrestrial MCA models, provided as part of the CCIA dataset. 
Data sources: Australian Water Availability Project (AWAP): CSIRO and Bureau of Meteorology (2015); ERA-
Interim: Dee et al. (2011).  

Variable Description Resolution Units 

Climate variables from the CCIA dataset 

Minimum 
temperature 
(Tmin) 

The minimum daily temperature is derived via delta 
downscaling from the AWAP daily time series data. 

0.05° °C 

Maximum 
temperature 
(Tmax) 

The maximum daily temperature is derived via delta 
downscaling from the AWAP daily time series data. 

0.05° °C 

Rainfall (Rain) Total daily rainfall derived from the AWAP daily time series 
data via delta downscaling. 

0.05° mm 

Relative 
humidity (RH) 

Mean daily relative humidity derived from the ERA-Interim 
daily mean time series data via delta downscaling and 
averaging of hourly values. The ERA-Interim dataset provides 
data at the hourly resolution, and daily mean relative humidity 
is calculated as the average of this hourly data daily. 

0.75° 
gridded data, 
bilinearly 
interpolated 
to 0.05° 

% 

Solar radiation 
(Rsd) 

Daily mean surface downwelling shortwave radiation derived 
from the ERA-Interim daily mean time series data via delta 
downscaling and averaging of hourly values. The ERA-Interim 
dataset provides data at the hourly resolution, and daily mean 
solar radiation is calculated as the daily sum of this hourly 
data. 

0.75° 
gridded data, 
bilinearly 
interpolated 
to 0.05° 

Wm−2 

Derived climate variables 

Effective 
rainfall 

Effective Rainfall (EffRain) is the amount of daily rainfall that 
reaches the soil surface after interception by the crop/plant 
canopy (Brutsaert, 2010). For simplicity, rainfall interception 
was a fixed proportion (0.25) of rainfall, and heavy events 
(greater than 50mm rainfall in one day) were assumed to 
exceed the capacity of the soil to store water. 

Accordingly, EffRain was calculated from daily rainfall data 
using 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  0.75 ∗ Rain, 

and then modified: values below 5mm were set to zero, values 
above 50mm were set to 50mm. 

0.05° 
mm 
day-1 

Potential 
evapotranspirati
on 

Daily potential evapotranspiration (ET0d) involves the transfer 
of water vapour to the atmosphere from vegetated and 
unvegetated land surfaces. The simple model of Hargreaves 
and Samani (1982), which predicts ET0d from radiation and 
mean daily temperature, was extended by adding latitude and 
longitude in a simple regression approach to account for the 
impact of lower evaporation in the wetter, colder NSW coastal 
regions and advection in the drier western areas of NSW: 

ET0d = 6.62872 + 0.00550 ∗ RSd ∗ (Tmean + 17.8)  − 0.04047 ∗ 𝐿𝐿
+ 0.01642 ∗ 𝑏𝑏,

0.05° 
mm 
day-1 



30 

Variable Description Resolution Units 

where RSd is daily incoming shortwave radiation measured at 
the ground (units for SILO data: MJ m−2 day−1; units for CCIA 
data: W m−2 day−1 multiplied by a conversion factor of 0.0864, 
following FAO56), Tmean is mean daily temperature (°C), b is the 
latitude of the location (°N) in GDA94 (decimal degrees), 
and L is the longitude of the location (°E) of the location in 
GDA94 (decimal degrees). 

Chill portions 

Chill portions measure chill accumulation in deciduous fruit 
trees, required for the plant to emerge from dormancy and 
begin the production of fruit. Chill 
portions were calculated based on the dynamic chill model 
developed by Erez et al. (1990) which has been shown to have 
consistent performance across various climates and is less 
likely to overestimate the impacts of warming climate on chill 
accumulation than less sophisticated models (Luedeling, 
2012).  

0.05° unitless 

Chill index (CI) 

CI was used to describe the impact of cold climatic conditions 
on lambs. The chill index was calculated using the formula 
from Broster et al., (2012):  
CI =  (11.7 + 3.1 ∗ 𝑉𝑉0.5)(40 − Tmean) + 481 + (418 ∗ (1 − 𝑒𝑒−0.04𝑋𝑋)) 

where CI is potential heat loss (chill index), V is wind velocity 
(a constant value of 2.5km h–1 was used), Tmean is mean daily 
temperature (°C) and X is daily rainfall (mm). 

0.05° kJm−2h 

Temperature 
Humidity Index 
(THI) 

THI measures the perceived temperature based on the 
combined effects of air temperature and relative humidity. THI 
was used to assess heat stress in livestock and was 
calculated using the formula from Moran (2005): 

THI =  0.8 ∗ Tmax + RH ∗ (Tmax– 14.4) + 46.4, 

where Tmax is the maximum daily temperature (°C) and RH is 
the mean daily relative humidity (%). 

0.05° unitless 

2.3.3.1. Marine variables 

The fisheries MCA models used 3 marine climate variables: sea surface temperature, sea 

surface height, and current strength (i.e., eddy kinetic energy). Historical observed data for 

these variables were obtained from the Copernicus Marine Environment Monitoring Service5. 

Some fisheries MCA models included a static structural habitat variable that remains fixed 

within historical analyses and future projections. 

5 https://marine.copernicus.eu 

https://marine.copernicus.eu/
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Table 5: Marine variables used in fisheries MCA models. 

Variable Description Resolution Units 

Dynamic Variables 

Sea surface 
temperature 

Daily global sea surface temperature reprocessed (level 4) from 
Operational SST and Ice Analysis system (CMEMS product 
#010_011) 

0.05° °C 

Sea surface 
height 

Daily gridded sea surface height (level 4) from the Sea Level 
Thematic Assembly Centre (CMEMS product #008_047) 

0.25° m 

Current 
strength 

Daily eddy kinetic energy computed from zonal and meridional 
velocity components from the Sea Level Thematic Assembly 
Centre (CMEMS product #008_047) 

0.25° m2s−2 

Fixed variables 

Bathymetry 
Seafloor depth from the GEBCO (GEBCO_2020) global 
bathymetric dataset. 

0.004° m 

Vertical relief  

The index of vertical seascape relief utilised in the marine MCA 
models was derived from the GEBCO (GEBCO_2020) global 
bathymetric dataset as follows: 

Vertical relief = 100 ×
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑀𝑀𝑒𝑒𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒
where SDpixel is the standard deviation of groups of pixels 
aggregated by bilinear interpolation from a gridded resolution of 
~0.004° (the native resolution of the GEBCO_2020 dataset) to 
0.05° (the common resolution of variables used to create spatial 
predictions in the VA Project). Medianextent is the median 
bathymetric value calculated nearshore of the continental shelf-
break throughout the study extent. 

0.004° unitless 

2.3.4. Modules and functions 

The VA Project strongly emphasised a modular approach to MCA model development. This 

provides standardisation and consistency across the modelled commodities and biosecurity 

risks. The modules and functions used in MCA models are described in Table 6. 

A set of modules was developed to provide these standardised methods for transforming 

climatic data into MCA model ratings. These modules typically perform two functions:  

• Calculate a summary statistic, such as the sum or mean, across a period of interest.
• Apply a climate suitability step function to produce ratings between 0 and 1.
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Table 6: Description of modules and functions used by the MCA models. 

Module Explanation 

Standard ratings 

Standard Rating variables use summary statistics calculated across a period of 
interest, such as average temperatures or cumulative sums of rainfall. The climate 
suitability step function is applied to return a single rating per year of data. For 
MCA models replicated monthly or seasonally, this summary is performed 
individually for each month or season. 

Proportional 
ratings 

Proportional Rating variables calculate ratings based on the proportion of time 
spent in each category. The climate suitability step function is applied to each daily 
value, and the result is averaged. This approach smooths out discontinuities 
resulting from applying a piecewise step function. Proportional Ratings were 
typically used to define optimal conditions for growth. 

Threshold ratings 

Threshold Rating variables use the time a variable spends above or below a 
threshold to produce a rating. Threshold ratings were typically used to define 
conditions that negatively affected growth (for example, the number of days over 
42°C in a phenophase).  

Matrices 
Matrices capture the interaction between two variables across phases, most 
commonly mean temperature and rainfall. Matrices are defined by pairwise 
categories of their two variables and act like a two-dimensional Standard Rating. 

Functions Explanation 

Lurking variables 
Lurking Variables are only activated if the temperature or rain threshold is reached 
or exceeded. Activating a lurking variable sets the climate suitability to zero for the 
entire year, month or phenophase. 

Damage penalty 

Damage Penalties can ascribe cumulative, multiplicative penalties on total climate 
suitability due to heat or cold. These penalties are applied to the overall climate 
suitability calculated by the MCA model and followed the approach of Lilley et al. 
(2015) and Bell et al. (2016). 
For example, an MCA model might define mild (–2°C, say) and moderate (–4°C, say) 
frost damage penalties, with each occurrence incurring a penalty of, say, 0.1 and 
0.2, respectively. Then, two mild and one moderate frosts in a single phenophase 
would reduce the maximum possible climate suitability to (1 – 0.1) * (1 – 0.1) * (1 – 0.2) 
= 0.648. 

2.3.5. MCA model extensions 

Extensions to the standard MCA framework described above were included for some commodity 

models in the VA Project. These were: 

• dynamic phenology,
• thermal time,
• germination triggers,
• commodity quality and
• extensions related to water requirements.

The specific modules used for each commodity and biosecurity risk model will be described in 

upcoming reports. 
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2.3.5.1. Dynamic phenology 

Dynamic phenology was implemented for several crops within the cropping node. In this 

extension, the start and end dates of phenophases were determined by thermal time thresholds 

(see below) or a mixture of specified dates and thermal time thresholds.  

Therefore, the start and end dates of each phenophase were driven by the thermal environment 

and varied spatially within a given year and from year to year at one place, rather than being 

fixed across the whole state, as for the standard MCA models. The date when these thermal 

time targets are achieved defines the date when phenophases change and, therefore, the 

periods over which climate variables of temperature and rainfall are assessed. No allowance for 

vernalisation or photoperiod was made. 

2.3.5.2. Thermal time 

Elapsed thermal time is the accumulated growing degree days (AGDD). The accumulation of 

AGDD begins each year when the crop starts to grow at the ‘day of germination’ identified by the 

corresponding ‘sowing rule’ (see explanation below for germination triggers). AGDD is 

calculated as 

𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 =  �𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑

𝑒𝑒

𝑑𝑑=0

, (1) 

where GDDd is the thermal time accumulated on the dth day after growth started. GDDd is 

calculated as follows: 

𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑 = �
�𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑑𝑑

2 � − 𝑇𝑇𝑏𝑏

𝑇𝑇𝐸𝐸𝑚𝑚 ��(𝑇𝑇𝑇𝑇𝐸𝐸𝑚𝑚𝑑𝑑 + 𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑑𝑑)
2 � − 𝑇𝑇𝑏𝑏, 0�

 if 𝑇𝑇𝑇𝑇𝐸𝐸𝑚𝑚𝑑𝑑  >  𝑇𝑇𝑇𝑇

otherwise,
(2) 

where Tmaxd (°C) is the maximum temperature on the dth day, Tmind (°C) is the minimum 

temperature on the dth day, Tb (°C) is the base temperature below which growth ceases, and Tc 

(°C) is the ceiling temperature above which growth ceases. These coefficients are specified by 

each MCA model which uses this extension. 

2.3.5.3. Germination triggers 

Following sowing, thermal crop time begins to accumulate when sufficient rainfall is received by 

the fallow seeds. The rainfall threshold adopted by the VA Project requires that at least 15mm of 

rain be received in any consecutive 14-day period within the 56-day germination window, which 

immediately follows the end of the fallow period. The crop commences to grow, and thermal 

time accumulates, from the last day of the first 14-day period in which the rainfall threshold is 

met. If the threshold is not met during the germination window, germination fails and the overall 

suitability rating for that year becomes 0. 
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2.3.5.4. Water stress index 

For rain-fed crops, water stress in each phenophase is estimated by the ratio between effective 

rainfall (EffRain) during that phenophase plus carry-over (CO) from the previous phenophase 

and the total crop evapotranspiration (ETc) during that phenophase: 

Water stress =  
EffRain + CO

ETc
. (3) 

2.3.5.5. Carry-over of rainfall 

Carry-over of rainfall between phenophases was included in some cropping MCA models. Rain is 

carried over into subsequent phases using the following rules: 

• 15% of fallow rainfall is carried over into the 1st growth phase,
• 15% of fallow rainfall is carried over into the 2nd growth phase,
• 30% of effective rainfall falling during a crop growth phase is carried over to the

subsequent phase.

For models which use this extension, the start and end dates of the commodity's fallow period 

must be specified. 

2.3.5.6. Quality 

Quality MCA models were developed for some horticulture and cropping commodities (Table 6). 

This extension was designed as a complementary system to assess climate impacts on the 

quality of commodities. This is particularly important for high-value crops, for which the crop 

quality can significantly affect profitability as yield.  

Table 7: Commodities for which quality MCA models were developed. 

Horticulture quality Cropping quality 

• Almond
• Blueberry
• Cherry
• Citrus

• Macadamia
• Walnut
• Wine

• Rice
• Cotton
• Wheat

• Barley
• Canola

The quality MCA model extension captures changes in climatic conditions that influence 

individual quality issues. However, it was found that information about climatic variables impact 

on quality has not been well studied. The published research focused primarily on climate 

impacts on yield without considering quality as an outcome. For these reasons, some of the 

biggest quality issues impacting horticulture and cropping remain poorly understood.  

The framework developed for the VA Project uses grey literature, data exploration and expert 

elicitation to fill this knowledge gap. In some cases, these knowledge sources facilitated the 

development of quality extensions for MCA models. Including quality impacts in the 
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vulnerability assessment has highlighted potential future climate risks to commodities that may 

have been overlooked if the focus remained on commodity yield. This extension could be applied 

to other commodities with further investigation, providing a greater understanding of the 

climatic variables influencing quality issues. 

2.3.5.7. Irrigation water requirements 

Irrigation water requirements for fully irrigated crops were calculated as the difference 

between crop evapotranspiration and total effective rainfall (calculated as described in Table 3). 

The resulting values also provide estimates of the relative change in irrigation water 

requirements. 

Total soil water use, either transpired by the crop or evaporated from the soil surface, crop 

evapotranspiration (ETc), during a growing season (one annual crop cycle), is calculated by the 

FAO56 crop coefficient method according to 

𝐸𝐸𝑇𝑇𝑇𝑇 =  �𝐾𝐾𝑇𝑇𝑝𝑝

𝑒𝑒

𝑝𝑝=1

� 𝐸𝐸𝑇𝑇0𝑑𝑑

𝑒𝑒2

𝑑𝑑=𝑒𝑒1

 (4) 

where ET0d is the reference evapotranspiration (mm day-1) for the dth day of the pth phenophase, 

Kcp is the crop coefficient ascribed to the pth phenophase and t1 and t2 are the first and last days 

of the year of each phenophase, respectively. Published Kcp values were used for each crop. 

For broadacre cropping MCA models, the number of phenophases and the first and last days of 

each phenophase will vary between MCA models and is be specified for each commodity. To 

estimate water demand or water stress during individual phenophases, ETc is be summed over 

that phenophase. 

For the horticulture MCA models which operated on a monthly timescale, a crop coefficient 

value was assigned to each month, rather than to each phenophase. 

Reference evapotranspiration on the dth day of the year, ET0d, was estimated from daily weather 

data across NSW using a simple parametric model given (see Table 4). 

The water requirements of irrigated crops, calculated over a production year, were taken to be 

the difference between crop evapotranspiration and the sum of the total effective rainfall and 

any initial water added at the time of sowing. 

2.4.  Expert Engagement 

The VA Project involved 113 NSW DPI experts and a further 77 external experts. Their 

association with the project ensured thorough peer review and validation of the MCA models, as 

detailed below. The break-down of these numbers by node is shown in Figure 8. 
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Figure 8: Experts were used to peer review the MCA models across the 6 VA Project nodes, from within 
NSW DPI staff and externally. 

2.4.1. Focus groups 

In the VA Project, a focus group of experts was convened to serve two important purposes. The 

first is to review the draft MCA models and utilise their expert knowledge, ensuring that the 

contents of the MCA models reflect both published knowledge and lived experiences. Experts 

were selected to provide input based on their perspectives as individuals familiar with the 

published literature or as people who could bring their on-the-ground experiences to the 

project. 

The second purpose was to complete the weighting process: the climate variables were 

reviewed through pairwise comparisons to determine their relative importance in the overall 

climate suitability of each commodity or biosecurity risk. In this process, known as an ‘analytical 

hierarchy process’ (AHP) (Saaty, 1980), experts were asked to draw on their expertise and 

knowledge to make qualitative judgements on the influence of different variables on the 

commodity or biosecurity risk of interest. The final weightings derived through the AHP 

reflected the consensus reached by each focus group. 

The overall mix of experts consisted of: 

• Expertise that spans a broad (ideally state-wide) geographical range.
• Expertise that spans all phases of the commodity or biosecurity risk.
• In-depth knowledge of the biological responses to weather and climate and knowledge

of the industry over time (usually people who have been involved in the industry
intensively over many years).

• In situ experience: people who have worked on the ground extensively, having seen how
the commodity or biosecurity risk develops and is managed in real-world conditions.
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Experts included academics, consultants, industry representatives, government staff from NSW 

and other government agencies in Australia or abroad. The goal was to have a good balance of 

perspectives to validate and enhance confidence in the MCA models. Furthermore, the experts’ 

experience assisted in filling the knowledge gaps that could not be addressed using the 

scientific literature alone. The VA Project oversaw 45 focus groups, mainly via online video 

conferencing due to the COVID-19 pandemic. A breakdown of the sectors represented by these 

experts is shown in Figure 9. 

Figure 9: The peer-review processed, used to develop MCA models in the Vulnerability Project, engaged 
with experts from a wide variety of sectors. 

Whilst these focus group meetings contain a subjective component, the rationale for each 

expert's response was always sought and articulated throughout the group's engagement. 

These rationales would usually draw on data and real-world observations and be noted by the 

meeting facilitators along with confidence levels based on these discussions. 

The experts helped to inform changes in the MCA models, which were made directly on the day 

of each meeting. This allowed collaborators to see how the model would work based on their 

decisions, and the rapid feedback allowed them to make quick assessments of the model 

validity. Where needed, further changes were then completed following a supplementary 

investigation. Transcripts of the meetings were saved and distributed. This ensured that all 

decisions could be cross-checked and confirmed if necessary. 
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Figure 10: The Vulnerability Assessment Project framework contained a sequence of peer-review elements, 
where internal NSW DPI staff and external experts had input into the MCA modelling process. 

2.4.2. The analytical hierarchy process 

During the focus group meetings, the experts considered the criteria at each level in the MCA 

model for their commodity or biosecurity risk. A series of pairwise comparisons were made, 

using the analytical hierarchy process (AHP), to determine the weighting for each criterion 

within the model. The outcome of these comparisons were relative weightings for the 

phenophases identified as climate sensitive as well as the important climate variables for each 

phenophase. 

The AHP is a well-tested, systematic method which allows a blend of research and expert 

knowledge to determine the weightings in the MCA model (Saaty, 1980). The weightings reflect 

the relative importance of each criterion in the MCA model, so that criteria with higher 

weightings have more influence on the model. 

To facilitate the AHP, a dedicated calculator application was built for use at focus group 

meetings. The calculator implemented the pairwise comparison calculation of Saaty (1980) in 

the shiny package in R.  

2.4.3. Verification of historical climate suitability 

After being assessed by the relevant experts, each MCA model was run using the SILO historical 

climate data for the years 1970-2019 to produce a series of spatial analyses showing the 

historical climate suitability. The historical climate suitability shown in these spatial analyses 

underwent a rigorous assessment by focus group members before the MCA models were 

further fine-tuned. A report containing the historical climate suitability outputs, in the form of 

boxplots, timeseries and maps and a summary of any changes proposed was sent to the focus 

group experts to seek further comments on the MCA model and to confirm whether these 

outputs were consistent with their expert knowledge and experience. 

After consideration by these experts, any further changes deemed necessary were made and 

the SILO data reprocessed using the refined MCA model. New historical climate suitability 

outputs were then produced and re-assessed. This process could occur several times until the 

experts were satisfied with the resulting historical climate suitability.
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2.4.4. Peer-review by Deakin University 

The MCA model was finalised once the focus group experts confirmed and agreed on the 

historical climate suitability results. Of the 42 MCA models developed, 25 were sent out for 

external peer review by technical experts at Deakin University’s Centre for Regional and Rural 

Futures. The Deakin University review process assessed whether: 

• MCA model structure and weightings were clear and reasonable.
• Feasible climate variables were employed, and a range of conditions considered.
• Historical conditions were represented with enough consideration for future climate

possibilities.
• MCA models captured and responded to ratings outside the historical range.
• Identified representative sites for the modelled commodities demonstrated sufficient

state-wide coverage.

The reviewers typically requested clarification or additional information in the following areas: 

• Rationale for the hierarchy structure for the MCA model.
• Calculation of variables like temperature-humidity index and solar radiation.
• MCA model assumptions and exclusions.

The external peer review process improved the VA Project’s approach, especially regarding 

MCA models’ transparency, and was valuable for maintaining consistency across all MCA 

models. 

3. Standardised Impact Assessment Reporting
After the evaluation of an MCA model against historical climatic conditions, the model was 

applied to projected future climate data to produce future climate suitability outputs for each 

commodity and biosecurity risk. These outputs allow for assessing future climate change 

impacts on the commodities at each level of the MCA models. 

3.1. Climate Impact Assessment 

A Climate Impact Assessment report was completed for each commodity or biosecurity risk to 

ensure a thorough evaluation of the future projection outputs at all levels of its MCA model. A 

detailed assessment of climate suitability was undertaken on key phenophases and climate 

variables, especially those that exhibited large positive or negative change. Due to the MCA 

models' size and extensive outputs, not all phenophases were assessed in detail, particularly if 

there was negligible change or if the change occurred in regions deemed irrelevant to that 

commodity or biosecurity risk. Quality, water demand and the cropping MCA model extensions 

were also assessed to understand the possible impact of future climate on those aspects of 

commodity production. 
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In addition to the MCA model output, NSW DPI experts completed a series of post-assessment 

questions to evaluate whether climate suitability would lead to the expansion or contraction of 

the industry, identify what drove the change in climate suitability and what the implications of 

that change might be to the industry. 

3.2. Cartography of Future Projections 

One of the VA Project’s objectives was to provide government and industries with a state-wide 

overview of future exposure and sensitivity to climate change across the primary industries 

sector. The main medium identified to provide this information was through mapping products. 

Considerable time went into developing maps that present the complex model output in a 

concise, unambiguous and accessible manner. This section details the various maps produced 

by the VA Project. 

The climate suitability map series present the mean suitability for historical data over 30 years 

of observations (1981 to 2010). For future projections, the mean suitability for 30 years (2036 to 

2065) was first calculated for each of the 8 GCMs, and the median of the 8 GCMs was then 

taken to produce ensemble future projection climate suitability maps for the two RCP scenarios, 

RCP4.5 and RCP8.5. This process is summarised in Figure 11. Details of the various maps 

produced by the VA Project are provided in Section 3.4. 

Figure 11: Climate suitability map products were created by the Vulnerability Assessment Project using 
historical and future projection climate data. The main results present the mean climate suitability over 
each year of the data sets, and the median climate suitability for the ensemble of global climate models. 
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3.3.  Accounting for Uncertainties 

The climate suitability MCA models and associated impact assessments produced by the VA 

Project are subject to uncertainties that must be acknowledged and addressed to avoid 

producing misleading results and to reduce misinterpretation. The sources of uncertainty in this 

project can be grouped into several categories, outlined below, along with ways of accounting 

for them. 

3.3.1. Sources of uncertainty 

3.3.1.1. Model limitations 

One of the primary sources of uncertainty lies in the development of the MCA models used to 

model the response of commodities and biosecurity risks to climate change. Building these MCA 

models involves assigning ratings to different factors affecting an organism's tolerance to 

environmental changes and weighting them according to their relative importance. These 

ratings and weightings were often based on expert opinion, which may have been influenced by 

biases, recent personal experience or limited knowledge. In addition, the MCA model approach 

is relatively simplistic and does not capture all the complex interactions and feedback pathways 

between organisms and their environment. This introduces uncertainties in the predicted 

impacts derived from the MCA model outputs. 

3.3.1.2. Future climate uncertainty 

Another source of uncertainty lies in the disagreement between GCMs. Each GCM uses different 

assumptions and approximations to represent the very complex processes involved in the 

Earth's climate system, leading to variations in the predicted outcomes. For instance, significant 

differences exist in how the GCMs simulate rainfall, a critical variable in some MCA models. To 

address this uncertainty, the VA Project utilised future climate projection data from an 

ensemble of GCMs to capture a range of possible future outcomes. The VA Project has used the 

recommended the ensemble of GCMs considered suitable for climate modelling in Australia 

(CSIRO and Bureau of Meteorology, 2015). However, even this curated set of GCMs contains 

projections of individual future climates for NSW which vary in character and translate, via the 

MCA models, into differences in commodity and biosecurity risk climate suitabilities. The extent 

of these differences is expressed in confidence statements and maps which accompany climate 

suitabilities reported by the VA Project. 

3.3.1.3. Spatiotemporal data resolution 

The MCA modelling used a single daily value of each climate variable, ascribed to a grid of 0.05° 

(approximately 5km by 5km). This resolution cannot capture the complex climatic variations 

over small spatial and temporal scales. This limitation could lead to inaccuracies in predicted 

outcomes, particularly for systems highly sensitive to small environmental changes. 
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3.3.1.4. Downscaling uncertainty 

The GCMs in the CCIA ensemble had been downscaled to a 0.05° grid using a simple statistical 

method incorporating local climate data (CSIRO and Bureau of Meteorology, 2015). This process 

introduces uncertainty and produces outputs suitable for analysis of central tendencies but less 

useful for analysis of variability or extremes. 

3.3.2. Minimising effects of model limitations 

Limitations and uncertainties associated with the modelling and impact assessment process 

have been addressed in the following ways, categorised here by the source of uncertainty.  

• Climate suitability maps have been presented using a categorical scale. This prevents the
outputs from being interpreted as containing fine-scale differences in climate suitability,
which the MCA model cannot resolve.

• The change in climate suitability maps included a ‘negligible’ category, represented by
values between –0.1 and 0.1. Use of this category prevents the identification of areas as
experiencing change not supported by the MCA model outputs.

• A gap analysis was conducted to identify where MCA models were poorly supported by
published research.

By adopting these practices, the VA Project sought to minimise misunderstandings and the 

potential for misuse of the model outputs. 

3.3.3. Addressing uncertainty in climate data 

Limitations and uncertainties associated with the CCIA climate data set have been addressed in 

the following ways, categorised here by the source of uncertainty. 

3.3.3.1. Disagreement between GCMs 

• The ensemble of 8 GCMs used in the VA Project represents a broad range of plausible
future climates for NSW.

• Climate suitability was presented as the median response to these 8 GCMs, with a
corresponding confidence map illustrating the level of agreement between the GCMs.

3.3.3.2. Downscaling and spatiotemporal resolution uncertainty 

• Climate variables considered unreliable on the stated spatial and temporal scales were
avoided. Data use was restricted to appropriate temporal scales; for example, no direct
analysis of consecutive days of extreme daily climatic conditions was included, nor
analysis of event sequences.

• Maps of changes in climate suitability included a category of ‘negligible’ change which
was employed to indicate where confidence was low. This prevents overreliance on
highly uncertain results.
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• Site-level data was reported as the median of a small spatial region around a given
location rather than the value at a single geographical point.

3.3.3.3. General future greenhouse gas emission uncertainty 

• Given the wide range of potential anthropogenic greenhouse gas emissions between now
and 2050, two greenhouse gas emission scenarios, RCP4.5 and RCP8.5, were analysed to
study future climates arising from intermediate and high emissions.

3.4. Explanation of Mapping Colour Schemes 

As climate suitability does not have a well-established or commonly known colour scheme like 

temperature anomalies or rainfall, a stakeholder survey was conducted to assess the ability of 

participants to understand and interpret climate suitability maps. The survey presented maps 

produced from MCA models’ spatial outputs, in various proposed colour schemes, with the aims 

of: 

• Assessing whether participants associate ‘higher climate suitability’ with darker or
lighter colours.

• Assessing whether participants associate ‘positive change in climate suitability’ with
darker or lighter colours and/or warmer or cooler tones.

• Assessing the ability of different cohorts of participants to understand maps of climate
suitability and change in climate suitability.

• Assessing the effectiveness of including a colour bar in assisting in the interpretation of
climate suitability and change in climate suitability.

To produce the final colour schemes for the VA Project, the results of the survey, along with 

accessibility considerations, were used to produce a series of complementary colour schemes. 

These were modified from ColorBrewer6 and CARTOColors7 palettes to create palettes for 

‘Climate Suitability’, ‘Change in Climate Suitability’, ‘Water Demand,’ and ‘Frequency’ maps. 

The presentation of all maps produced by the VA Project is done using ‘map panels’, in which 

carefully selected maps are always shown together. These are the historical climate suitability 

map and 3 maps for each of the two RCP scenarios: median climate suitability, change in climate 

suitability and confidence in change in climate suitability. Together, these maps provide 

historical context for the commodity or biosecurity risk as well as allowing for comparison 

between the two emissions scenarios. 

6 https://colorbrewer2.org/ 

7 https://carto.com/carto-colors/ 



44 

Figure 12: The Vulnerability Assessment Project adopted standardised language for categories of climate 
suitability, change in climate suitability and confidence in that change. This language allows for a consistent 
comparison of results across all commodities and biosecurity risks. 

Considered and consistent language has been adopted by the VA Project to describe the results 

shown in these maps. The same descriptions of suitability, change and confidence are used 

across all commodities and biosecurity risks, along with consistently applied categories for each 

type of map: these are summarised in Figure 12. The adoption of standardised language across 

the VA Project assisted 53 collaborators to complete project reporting for their commodities or 

biosecurity risks and ensured that this reporting would be consistent and comparable across 

nodes. 

3.4.1. Climate suitability maps 

The climate suitability panels show the output of the MCA models and are presented as a 

unitless index, ranging between 0 and 1. Climate suitability maps use a light yellow to dark 

green colour scheme with 5 categories (see, for example, Figure 13 A), B i) and C i)): light yellow 

at the low end of the colour scheme (values from 0 to 0.2, corresponding to very low suitability) 

and darker greens at the high end of the colour scheme (values from 0.8 to 1.0, corresponding to 

very high suitability). Growing region polygons and key growing sites are displayed on the maps 

to highlight areas where the commodity is currently produced and where the biosecurity risks 

are found or the host commodities. 

3.4.2. Change in climate suitability maps 

The change in climate suitability panels show the change between a commodity or biosecurity 

risks’ historic climate suitability and its future projected climate suitability (for both RCP4.5 and 

RCP8.5). Change in climate suitability uses a purple-white-green colour scheme (see, for 

example, Figure 13 B ii) and C ii)) with 11 categories: 5 shades of purple for negative change, a 

white category for negligible change and 5 shades of green for positive change. Positive 

change, where the future climate is more suitable for the commodity or 



45 

biosecurity risk, is shown in shades of green. Negative change, where the future climate is less 

suitable, is shown in shades of purple. Darker shades of green or purple show greater changes 

(values closer to −1 or 1), and lighter shades of green or purple represent smaller changes in 

climate suitability. Negligible change (values between −0.1 and 0.1) is represented by white. 

3.4.3. Confidence in change maps 

Confidence in the MCA models' predictions of changing climate suitability was assessed using 

the ratio of the absolute value of median change across the 8 GCMs to the standard deviation of 

climate suitability across the 8 GCMs. This ratio expresses the level of agreement of the MCA 

model outputs between the different GCMs. It provides a statistical assessment of the likelihood 

that the median change is greater than that expected due to random chance. Higher ratios 

reflect greater confidence that all 8 GCMs agree on the extent of change in climate suitability.  

Modifications were made to the resulting confidence in two cases where the calculated 

confidence category was unrealistic:  

• Areas of negligible change (non-zero median change with absolute value less than 0.1),
low standard deviation (less than 0.1) and low confidence were modified to moderate
confidence: this occurs when all GCMs agree on negligible change but disagree on the
direction (positive or negative) of that small change.

• Areas associated with no change (median change less than 0.01) and zero standard
deviation (that is, agreement across all GCMs) were set to high confidence.

Figure 13: Example of a climate suitability panel, comprised of 7 maps. A) shows mean historic climate 
suitability for 1981-2010; B) and C) shows future climate suitability for 2036-2065 for the intermediate 
(RCP4.5) and high (RCP8.5) emissions scenarios, respectively; i) shows the mean future climate suitability, 
ii) shows the median change in climate suitability between the historical and future time periods, and iii)
shows the confidence in those changes, reflecting the level of agreement between the 8 GCMs. The colours
and standardised language used by the Vulnerability Assessment Project to describe these maps are
explained in Figure 12.
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Confidence maps (see, for example, Figure 13 B iii) and C iii)) are included in the climate 

suitability panels using 3 categories: low (ratio less than 1), moderate (ratio between 1 and 2) and 

high (ratio greater than 2). The confidence in change map uses a 3-part greyscale colour 

scheme, with the lightest grey representing low confidence and the darkest grey representing 

the highest confidence. 

3.4.4. Water demand maps 

Water demand maps use a pale yellow to burgundy colour scheme to show the water required 

by the commodity (see, for example, Figure 14 A), B i) and C i)), with 2 ML Ha–1-wide categories. 

Darker shades of burgundy represent higher water demand, where larger amounts of water are 

required for optimal production of a commodity, and lighter shades of yellow and orange 

represent lower water requirements for optimal growth. 

Change in water demand maps use a brown-to-teal colour scheme with 11 categories showing 

absolute change. Increased demand (positive values), where a crop will require more irrigation in 

the future, is shown in shades of brown. Decreased demand (negative values), where a crop will 

require less water in the future, is shown in shades of teal; this is a rare occurrence in the VA 

Project outputs. Darker shades indicate greater changes, whilst lighter shades represent 

smaller changes (see, for example, Figure 14 B ii) and C ii)). Negligible change (values between 

−0.5 and 0.5 ML/Ha) is represented by white. Confidence in the change in water demand was

calculated in the same manner as climate suitability.

Figure 14: Example of a water demand panel, comprised of 7 maps. A) shows mean historic water demand 
for 1981-2010; B) and C) shows future climate suitability for 2036-2065 for the intermediate (RCP4.5) and 
high (RCP8.5) emissions scenarios, respectively; i) shows the mean future water demand, ii) shows the 
median change in water demand between the historical and future time periods, and iii) shows the 
confidence in those changes, reflecting the level of agreement between the 8 global climate models.  
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3.4.5. Frequency maps 

For many primary industries commodities, it is important to understand how often or likely it is 

that something occurs. Examples of this include the frequency of germination in cropping and 

the frequency of the growing degree days being completed for some fruit crops (allowing fruit 

maturation to occur). Frequency maps were calculated for the 30 years of historical and future 

projection climate data, showing the proportion of those years that a given event occurred or 

that the climate suitability threshold was met or exceeded. 

Frequency maps were also used to show the number of months each year in which conditions 

were optimal for biosecurity risk growth and survival. ‘Frequency of optimal months’ maps were 

calculated as the number of months per year during which the biosecurity risk's climate 

suitability was 0.6 or greater, averaged over the 30 years of historical and future projection 

climate data. The order of operations in this calculation was repeated for each RCP scenario:  

• For each GCM, calculate the mean number of months per year for which climate
suitability was greater than or equal to 0.6.

• Take the median across the GCMs to calculate the frequency of optimal months and
median change.

• Calculate confidence as the ratio of the median change to the standard deviation across
the 8 GCMs.

Frequency maps use an orange colour scheme, with lighter and darker shades of orange 

representing lower and higher frequencies, respectively (see, for example, Figure 15 A), B i) and 

C i) and Figure 16 A), B i) and C i)). ‘Change in frequency’ maps use an orange-to-purple colour 

scheme, with purple shades representing negative changes (drops) in frequency and orange 

shades representing positive changes (increases) in frequency. Darker shades of purple and 

orange indicate greater changes, whilst lighter shades represent smaller changes (see, for 

example, Figure 15 B ii) and C ii) and Figure 16 B ii) and C ii)). Negligible change (values between 

−0.1 and 0.1) is represented by white; for monthly frequency change maps, negligible change

means −1, 0 or 1 months.

Confidence in change of frequency maps was calculated in the same manner as for climate 

suitability, except that the thresholds for negligible change and low standard deviation were set 

to 0.5 to account for the increased range of variation in the number of months of high suitability. 
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Figure 15: Example of a frequency panel for crop germination, comprised of 7 maps. A) shows mean historic 
germination frequency for 1981-2010; B) and C) shows future germination frequency for 2036-2065 for the 
intermediate (RCP4.5) and high (RCP8.5) emissions scenarios, respectively; i) shows the mean future 
germination frequency, ii) shows the median change in germination frequency between the historical and 
future time periods, and iii) shows the confidence in those changes, reflecting the level of agreement 
between the 8 global climate models. Black outlines show the current commodity growing regions. 

Figure 16: Example of a frequency panel for optimal months for a biosecurity risk. Optimal months were 
defined as having a climate suitability of greater than 0.6. The panel is comprised of 7 maps. A) shows mean 
historic frequency for 1981-2010; B) and C) shows future frequency for 2036-2065 for the intermediate 
(RCP4.5) and high (RCP8.5) emissions scenarios, respectively; i) shows the mean future frequency, ii) shows 
the median change in frequency between the historical and future time periods, and iii) shows the 
confidence in those changes, reflecting the level of agreement between the 8 global climate models. 
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3.5. Site Data 

Site-level data were extracted from the MCA model outputs to obtain a clearer local picture of 

climate suitability, water demand, suitability change and confidence outputs for regions of 

interest to each commodity. These were for key production locations for commodities or areas 

of concern for the biosecurity risks. 

The coordinates of these locations were specified, and values extracted from pixels within a 0.1° 

(~10km) radius around each location to provide site-level data. The median of these values was 

provided as the value for that site. Pixels within this radius falling outside the NSW state 

boundary or off the coastline were excluded from this analysis. 

Site-level data was also used to create annual calendar plots for biosecurity risks, and 

phenological calendar plots for horticulture and cropping commodities. Historical and median 

RCP4.5 and RCP8.5 calendars for each site allow for a visual comparison of changes in climate 

suitability, frequency of optimal months and dynamic phenology to be made. An example of a 

calendar plot for a biosecurity risk is shown in Figure 13. 

Figure 13: Calendar plot for biosecurity risk. The calendar plot is divided into sections for each 
representative region for host commodities. Columns represent months of the year, and rows for each 
region show the climate suitability for the historical and future emissions scenarios. In this example, note 
that, during winter, the period of very low climate suitability (yellow bars) in several of the regions becomes 
broader under the future emissions scenarios. 

Calendar plots for the biosecurity risks highlighted the climate suitability for each month for 

each life cycle phase of a biosecurity risk. By analysing monthly climate data using the 

biosecurity risk MCA models, these calendar plots provide a visual representation of the change 

in climate suitability across the year. Note that the number of optimal months in these plots for 

the key locations can differ slightly from the values provided in the ‘frequency of optimal 
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months’ maps, particularly when future climate projections are associated with low confidence. 

This is because suitability categories are determined by the median suitability rather than 

considering a suitability threshold and then calculating the median. 

3.6.  Gap Analysis 

The VA Project conducted state-wide climate impact assessments across many primary 

industries to identify the climate vulnerabilities facing each sector in NSW. The new data 

generated by this project will help identify the climate vulnerabilities, adaptation priorities and 

opportunities for each industry.  

However, many knowledge gaps were identified during the development and validation of the 

individual MCA models. These knowledge gaps were barriers to developing the MCA models, 

sometimes leading to the exclusion of key climate criteria for commodities or biosecurity risks 

because there was no data to justify their inclusion in the MCA model. It increased the difficulty 

in validating the historical MCA model output.  

External experts were heavily relied on to address knowledge gaps. Their knowledge and 

experience were used to inform the development and validation of criteria within the MCA 

models. Gap analyses were conducted to capture where 'expert knowledge' was used to inform 

criteria within the MCA models. The approach visually identified the knowledge source used for 

each MCA model and was consistently used across all MCA models in the VA Project. At the end 

of the gap analysis, a list of research priorities was generated to assist in directing future 

research and project development. 

3.6.1. Knowledge categories 

Data sources were categorised according to their level of confidence as follows: 

• ‘Published data’ have been peer-reviewed and published, including peer-reviewed journal
articles and industry reports. This category is regarded as the most reliable source of
information and is the preferred source for thresholds, ranges and ratings.

• ‘Data exploration’ includes modelling or datasets, including data from unpublished field
trials or monitoring experiments or models such as APSIM8, used to identify values,
thresholds and ratings.

• ‘Expert experience’ derives the variables, thresholds and ratings from individuals'
experience, observations, and judgment during focus group meetings. This is usually
used when no suitable published data or exploration options exist. It includes widely used
‘rules of thumb’.

• ‘Modified published literature or data’ are published data modified by focus group
experts or through data exploration. Common reasons for changing or modifying the

8 https://www.apsim.info/ 

https://www.apsim.info/
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literature and data include studies conducted on a similar variety, crop or species, 
studies conducted outside of NSW or Australia, where conditions may be slightly 
different, or laboratory studies requiring adjustments to reflect the differences between 
laboratory and real-world conditions.  

• ‘Modified data exploration’ are field trials or monitoring results that have been modified
or adjusted by experts, usually to address known issues, limitations or biases in the
model or dataset. Modified data exploration may also occur when the dataset covers a
similar variety, crop or species or when the dataset is based on data collected outside of
NSW or Australia.

• ‘Modified literature and data’ are literature and data sources that are used to develop the
draft MCA model and then modified or combined through the experts' discussion during
a focus group meeting. This category will often apply when complex literature and data
exploration combinations have been used to provide a basis for thresholds and values.

4. Ending the VA Process

4.1. Final expert review 

4.1.1. Focus group review of projections 

The key aspects of the lifecycle of the commodity or biosecurity risk that may be impacted by a 

future negative change in climate suitability were identified during the Impact Assessment 

process. These key findings were presented to the focus group experts, and a discussion about 

the key adaptation strategies was facilitated in these meetings. The objectives of this 

engagement were to:  

• Seek the focus groups’ input on the impact assessment findings, specifically which
findings are most pertinent for communication to industry and government.

• Identify adaptation priorities for industry members.

The discussions captured in these meetings were used to develop the communication narrative 

and associated documentation for the MCA model.  

4.1.2. Industry and government briefings prior to general release 

Prior to the general release of the Summary Report, which contains key results for each 

commodity a series of industry and government briefings were held. These briefings continued 

the collaborative approach taken to develop the MCA models and have provided the VA team 

and the relevant industry/government bodies an opportunity to share their knowledge and 

become familiar with the project and the findings. 

The VA team communicated the following in these meetings: 

• The rationale for the project and an overview of the methodology
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• The combined use of published literature and expert elicitation in MCA model
development

• The change in climate suitability for the commodity/biosecurity risk and the opportunities
or risks this presents

• The adaptation options proposed by experts to reduce industry vulnerabilities
• The on-going research and development priorities

The sessions allowed industry and government stakeholders to provide feedback about the 

findings or the adaptation options already being considered or developed for that commodity. In 

addition, it allowed for the knowledge and experience of these bodies to inform project 

reporting and identify future research priorities and collaboration opportunities. Lastly, it has 

helped the VA team to refine the communication messages and narratives further and identify 

issues for resolution.  

4.1.3. Public release 

The primary objective was to promote the findings of the VA Project with the long-term goal of 

reducing the climate impacts and increasing the resilience of primary industries in NSW. The 

release of the results and supporting documentation will enable NSW DPI to contribute these 

findings into the completion of State and National Climate Risk Assessment programs in the 

near future. Early consultation has shown a strong interest in the results.  

Effective communication was achieved by: 

• Consulting with industry and government to understand their needs.
• Collaborating with industry and government to develop and review research findings.
• Development of clear, engaging and easily interpretable outputs and collateral.

In summary, this collateral was produced for use across various audiences to support the 

communication activities, including:  

• Reports – summarising findings for commodities and biosecurity risks, including maps,
adaptation priorities.

• Website content – incorporating maps, fact sheets, infographics, commodity and
biosecurity risk summaries, adaptation priorities, case studies industries and adaptations
in action.

• Briefings – industry and government prior to release to increase familiarity and garner
feedback.

• Presentations – for NSW DPI staff to share with stakeholders internally, online and
across government.

The dissemination of results was staged to deliver understanding, acceptance and engagement 

across the industry and government and achieve the overarching communication goal of 

ensuring the utilisation of the project findings.  
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