An Animal Replacement Alternative for the Investigation of Cerebro-Vascular Diseases

Georges E. R. Grau, M.D., Privat-Docent

Discipline of Pathology

Overview

experimental approaches

main disease studied

our co-culture model system

other clinical applications

 "Le fait qu'on se soucie des animaux aujourd'hui est un signe que l'humanité progresse"

 "The fact that we care about animals nowadays is a sign that mankind is progressing"

Boris CYRULNIK

"All models are wrong, but some are useful"

George E.P. Box (1919-2013)

Overview

experimental approaches

main disease studied

our co-culture model system

other clinical applications

Endothelial cells (EC)

culture

Endothelial cells Also: a strategic location BONE MARROW BLOOD TISSUES Blood Dendritic cell dendritic cell Pluripotent Monocyte Myeloid stem cell precursor Indeterminate cell Macrophage

Approches expérimentales in vivo

observation: immunohistopathologie

mécanismes des lésions

Overview

experimental approaches

main disease studied

our co-culture model system

other clinical applications

Cerebral Malaria (CM)

Major life-threatening complication:

a diffuse encephalopathy due to untreated infection

with *Plasmodium falciparum*

Disorientation

Coma

Delirium

Seizures

Severe metabolic acidosis

Multisystem dysfunction

up to 30% mortality rate

Neurological sequelae

Experimental cerebral malaria

↑↑↑ pro-inflammatory cytokines (TNF, IFN-γ, LT)

engorgement of capillaries + enlargement of perivascular spaces

Cerebral malaria (CM) pathogenesis: remains incompletely understood

Current approaches for the study of CM

Clinical studies in endemic areas

Ex vivo – post-mortem histopathology on human brain tissue

In vivo - animal models

In vitro - modelling of CM lesion

CM is a strictly T-cell dependent pathology

TNF is an essential mediator in CM

- high serum levels during CM
- its neutralisation prevents CM
 - antiserum
 - mAb
 - pXF
- induces CM in resistant mice
- absence of CM in
 - transgenics for sTNFR
 - TNF knock-outs

"Sans technique, le genie n'est rien qu'une sale manie"

"Without technique) genius is nothing more than a lousy habit"

- RESPECT
- CARE
- MINIMUM BURDEN

• ...

Georges BRASSENS

Overview

experimental approaches

main disease studied

our co-culture model system

other clinical applications

Immunostaining (Malawian patient)

Modelling <u>human</u> cerebral malaria in vitro

In vitro evidence for a role of platelets in PRBC-EC bridging

Tri-partite, quadri-partite cultures

brain endothelial cells

Modelling cerebral malaria in vitro: 2 levels of complexity

cell-cell interactions

cell-derived microparticles

Platelet MP (PMP) bind to and are internalised in brain EC

Compartmentalisation of PMP in brain EC

PMP bind to and transfer platelet antigens on brain EC surface

PMP membrane PKH67

CD36 / GPIV

New surface phenotype for brain EC

PMP membrane and content have a different fate after contact with EC membrane

Membrane : PKH26 Content: calcein-AM

PMP bind and transfer platelet antigens to PRBC

PMP enhance PRBC cytoadherence on brain EC

Are endothelial MPs immunomodulatory?

Overview

experimental approaches

main disease studied

our co-culture model system

other clinical applications

Novel applications of our brain endothelium co-culture model

- Multiple sclerosis (coll. Prof. S. Hawke)
- Septic shock
- Cryptococcal meningo-encephalitis (coll. Prof. T. Sorrell)
- Viral meningitides (coll. Prof. N. King)

Multiple Sclerosis

Trans-endothelial migration (TEM) in vitro model

Human brain microvascular endothelial cell line hCMEC/D3, on polycarbonate filters

Fingolimod reduces transmigration of PBMCs from MS patients across endothelium in a BBB in vitro model

Antibody panels for flow cytometric analysis of leucocyte (PBMC) subsets.

	405 Excitation		488 Excitation				633 Excitation			
	Pacific Blue	Krome Orange	FITC	PE	ECD	PC5.5	PC7	APC	APC- AF700	APC- AF750
B reg	CD4	CD3	CD19	CD86		CD80	CD274	CD62L	CD8	CD27
Activation	CD4	CD3	CD19	CD14		CD154	CD28	CD62L	CD8	CD27
Adhesion	CD4	CD3	CD11a	CD44 or CD40		CD56	CD25	CD62L	CD8	CD49d
NK, NKT and Th17	CD4	CD3	CD16	CD161		CD56	CD25	CD146	CD8	CD45RA

Conclusions / TEM in MS patients

- PBMCs from non-treated MS patients adhere and migrate more efficiently
- Fingolimod
 - reduces TEM of T cells, B cells and monocytes towards the levels of healthy controls
 - might act on leucocytes, additionally to its effect on endothelial S1PR

Septic Shock and the blood-brain barrier

microparticles in sepsis

→ Do LPS-induced monocytic MP (mMP) functionally differ from MP released from resting cells?

Do mMP display pro-inflammatory / procoagulant properties ?

What are the effects of mMP on endothelium integrity?

LPS-induced monocytic MP partially co-localise with endothelial lysosomes

Lysosomes

45 min

2 h

moMP PKH67 / LysoTracker

Beryl WEN Effect of LPS-induced monocytic microparticles on endothelial integrity

Cryptococcal Meningitis

Flow chamber: to explore cells in movement

Effect of TNF on binding of phagocytosed cryptococci to brain endothelium

Resting endothelium

TNF-activated endothelium

Mechanisms of cryptococcal passage

Conclusion

Better knowledge

Better treatment(s)

The University of Sydney Australia

Vascular Immunology Unit

Valéry Combes
Fatima El-Assaad
Dorothée Faille
Sharissa Latham
Beryl Wen
Anna Zinger
Simon Hawke
Georges E. Grau

Molecular Immunopathology

Helen Ball
Andrew Mitchell
Nick Hunt

Viral Immunopathology

> Zheng Ling Nick King

Marie Bashir Inst.
Westmead

Julianne Djordjevic Tania Sorrell Alavita, Inc. /Stanford

Anthony Allison
Luis F. Fajardo

University of Genève, Switzerland
Christine Chaponnier

Pierre-Olivier Couraud

