Challenges in the replacement of in-vivo testing for Clostridial vaccines

29 Sept 2015

Introduction

- There are two key drivers behind vaccine testing:
 - Regulatory requirements to ensure safety and efficacy of released product. (APVMA, European Pharmacopoeia)
 - Process requirements to ensure product is formulated to meet release requirements and that the finished product meets the registered release specification.

Antigen Production Process

Vaccine Manufacturing Process

Goal of the work

Current control tests are based largely on lab animal use: mice, guinea pigs and rabbits

Goal to achieve within the next 10 years: 80% control tests based on *in-vitro* tests

20% in-vivo tests will be still required: for reagent calibration, in case of significative change of manufacturing process and for testing new vaccines

Vaccine complexity – a challenge

- 14 different vaccines
- 10 different antigens, mainly toxoids
- Vaccines contain 3 to 7 different antigens
- Using oil and aluminium adjuvants
- Some supplemented with moxidectin, selenium and/or Vit B12

Vaccine specificity – a challenge

Monoclonal antibodies must be specific to the toxoid we want to capture and quantify

E.g. Clostridium perfringens D and Corynebacterium pseudotuberculosis both produce a phospolipase (toxoid) and are in the same vaccine. However the monoclonal is not specific ... Grrrrrr

Vaccine adjuvants – a challenge

If the toxoid must be stripped off the adjuvant to quantify it, this introduces more challenges

- Must you strip the toxoid, if so, how much?
- How reproducible is the stripping process?
- Does stripping affect the toxoid structure?

Vaccine assay validation – a challenge

Every new assay must be validated

- Specificity
- Linearity
- Limits of quantification
- Reproducibility (intra— and interassay)
- Accuracy
- Robustness

And supported by

- Controls and standards
- SOP
- Training of QC staff
- On-going support

Parallel testing – a challenge

Every new assay will be **tested in parallel** with the existing animal test

However some vaccines we only make 1-2x/yr so testing 20 batches in parallel could take...

... Partially resolved by making extra lab batches

"The doctor will be with you in just five more minutes."

Vaccine assay Registration – a challenge

Every assay, for each of 10 antigens, will need to be registered against each product they are used in.

- Registration cost
- Registration risk

