Cryopreservation of mouse lines: embryo and sperm freezing

Kevin Taylor

Australian BioResources

October 2013

Australian BioResources, Moss Vale

Australian BioResources, Moss Vale

- Specified Pathogen Free (SPF) facility
- Provide standard mice for medical research
- Manage and care for researcher's GM mouse colonies
- Users throughout NSW and beyond

Biobubbles

- Soft, transparent walled independent breeding rooms
- 1,400 cage capacity per bubble
- 2 technicians per bubble
- 80 air changes per hour

Scientific Services at ABR

•Rederivation

•Microinjection (generation of novel GM lines)

•DNA prep (as part of the Mouse Genotyping Service

•Cryopreservation (embryo or sperm freezing)

Why cryopreserve a line?

- End of experimental usage
- Ethical considerations (reduction)
- Cost reduction
- Security against:
 - Genetic drift
 - Human error
 - Loss of gene of interest
 - Natural disasters
- Readily available for transport
- Future rapid expansion of colony

Embryos or sperm, which is better to freeze?

Depends on circumstance - factors to consider:

•Cost

•Nature of GM

•Background of line

•Validation

•Likelihood of reanimation

Cryopreservation - method comparison

	<u>Sperm</u>	<u>Embryos</u>
Completion time	Faster	Slower
Cost of freezing	Lower	Higher
Mice required	Few (4 males)	Many
Number frozen	Millions	Few hundred
Genetic material	Haploid	Diploid
Recovery	Involved (IVF)	Simple
Background	Only half preserved	Fully preserved

Freezing and reanimation at ABR

Maintenance breeding

•Recommended: 2 breeding pairs 2 cages of stock

•Assume:

2 active breeding pairs6 litters per year8 mice born per litter

Around 100 animals per year

Number of animals used

Cumulative cost of ongoing breeding under maintenance conditions

Weeks

Sperm freezing with basic validation

Weeks

Embryo freezing with basic validation

Weeks

Conclusion

- Many lines are kept breeding long after experiments are finished
- Replace breeding stock with cryopreserved material
- Reduce number of animals used per year
- Reduce ongoing costs to researchers
- Refinements to technique (better freezing and thawing methods) allow fewer animals to be used as donors
- Frozen material is easy to store and transport can avoid difficulty of transporting live animals

Cryopreservation - cost comparison

	<u>Sperm</u>	<u>Embryos</u>
Freezing (with validation by culture)	\$725	\$2,458
Freezing (with validation by live pup testing)	\$1,418	\$2,793
Reanimation	\$1,611	\$1,289
Annual storage (per line)	\$26	\$26

Sperm freezing with full validation

Weeks

Sperm freezing with basic validation & reanimation

Weeks

Embryo freezing with full validation

Embryo freezing with full validation & reanimation

