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GLOSSARY OF TERMS AS DEFINED IN THIS REPORT 

Acclimation 
pressure/depth 

The pressure/depth within the water column at which the density of a fish is 
equal to the density of the surrounding water. At greater depths/pressure, a 
fish must secrete more gas into its swim bladder to maintain its density. 

Barotrauma Injury caused by rapid or extreme changes in pressure, typically a reduction 
or decompression. 

Downstream fish 
passage 

The movement of fish in the direction of water flow, which may include 
movements down a river channel, but also may involve moving laterally 
into and out of floodplains. 

Emphysema A condition in which air is abnormally present within the body tissues. 

Exophthalmia Abnormal protrusion of the eyeball or eyeballs. 

Hydropower The generation of electricity from the kinetic power of moving water. The 
kinetic energy of water is typically generated by having two water bodies at 
different heights (termed head), usually at a reservoir dam or weir. In a 
typical installation, water flows over a turbine and generates pressure, 
which causes the shaft to rotate. The rotating shaft is connected to an 
electrical generator, which converts the motion of the shaft into electricity. 

Mini hydropower The definition of a mini hydro project varies, but a generating capacity of 
up to 10 megawatts (MW) is generally accepted as the upper limit. This 
makes the technology suitable for low-head applications. 

Nadir pressure The lowest point of pressure measured. 

Ratio of pressure 
change (RPC) 

The change in pressure that a fish experiences between the pressure it is 
acclimated at (neutrally buoyant) before passage, and the lowest pressure 
(nadir) it is exposed to during infrastructure passage. RPC can be expressed 
in one of two ways; when comparing RPC between scientific studies, it is 
important to know which calculation of RPC has been used. When 
calculated as exposure ÷ acclimation pressure (E/A), RPC relates to the 
proportion that the exposure pressure is of the acclimation pressure. E.g. a 
RPC of 0.3 means that the fish was exposed to 30% of the pressure at 
which it was acclimated. In contrast, when calculated as acclimation ÷ 
exposure (A/E), RPC relates directly to the degree of expansion of gas 
governed by Boyle’s law. E.g. when A/E = 3, the swim bladder would 
expand three times in volume. Unless otherwise stated, E/A is commonly 
referred to as RPC in this report, and is the predictor variable against 
which all injury and mortality models have been generated.  

Pharyngo-clitheral 
membrane 

Tissue which lines the gill cavity to form a semi-transparent membrane 
which separates the body cavity from the gills. 

Physoclistous Lacking a direct connection between the swim bladder and oesophagus, so 
that pressure within the swim bladder must be adjusted at different depths 
by gas diffusion into or out of the blood via a vascular system. 

Physostomous Having a duct connecting the swim bladder to the oesophagus, enabling gas 
to be quickly taken into or vented from the swim bladder through the 
mouth.  



  xiii 

Downstream fish passage criteria for the MDB  Boys et al. 

River infrastructure/s Refers to any artificial structure placed within a natural or artificial 
waterbody for the purposes of intercepting, regulating or diverting river 
flow (e.g. dams, weirs, regulators, hydropower facilities). 

Sensor Fish An autonomous device containing gyrometers, accelerometers and pressure 
and temperature sensors that is released through river infrastructure to study 
the hydraulic conditions experienced by fish during passage.  

(Fluid) shear (stress) The force exerted when two masses of water with different velocities and/or 
direction intersect, causing friction at the interface. 

Strain rate One measure of shear stress, expressed as change of velocity over distance. 

Sub-atmospheric or 
negative pressure 

A pressure below that of the surrounding atmospheric pressure (<~101 kPa) 
at a specific point; a partial vacuum. 

Surface or 
atmospheric pressure 

The pressure exerted by the weight of the atmosphere, which at sea level 
has a mean value of ~101 kPa. 

Swim bladder A gas-filled sac present in the body of many bony fishes, used to maintain 
and control buoyancy. 

Weir – Overshot  A weir in which water flows over the top of a crest, which may be fixed or 
adjustable. 

Weir – Undershot  A weir in which water flows under a gate that is typically adjustable. 
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NON-TECHNICAL SUMMARY 

Downstream fish passage criteria for hydropower and irrigation infrastructure in the Murray–Darling Basin.  
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  Nelson Bay, NSW, 2315, AUSTRALIA 
  Telephone: +61 2 4982 1232 Fax: + 61 2 4982 2265 
  e-mail: craig.boys@dpi.nsw.gov.au  
 
 
COLLABORATIVE AUTHORS: Dr Anna Navarro2,3, Dr Wayne Robinson2,3, Mr 

Anthony Fowler1, Mr Stephen Chilcott1, Mr Brett 
Miller4, Mr Brett Pflugrath1,4,5, Dr Lee Baumgartner2, 
Mr Jarrod McPherson2, Dr Richard Brown5 & Dr 
Zhiqun Deng5.  

 
2 Narrandera Fisheries Centre, NSW Department of Primary Industries 
3 Charles Sturt University 
4 Water Research Laboratory, University of New South Wales 
5 Pacific Northwest National Laboratory, Richland, WA, USA 
 
 
NON TECHNICAL SUMMARY: 
 
For many fish species, downstream migration is required to satisfy important life history requirements, 
such as feeding and breeding. However, river infrastructure (e.g. dams, weirs, hydropower turbines) 
can block these migrations. The provision of safe downstream passage of fish at these structures is 
therefore a significant challenge worldwide. Fish are exposed to a range of stresses when they pass 
river infrastructure that are not encountered in natural flowing, unregulated rivers. Two stresses that 
can combine to cause significant injury and mortality to fish are decompression (rapid, extreme drops 
in water pressure) and fluid shear stress (when water of differing velocities and direction intersects, 
causing distortion of fish). 
 
Within the Murray–Darling Basin (MDB), many fish species undertake extensive downstream 
migrations as eggs, larvae, juveniles or adults. Passage through river infrastructure has been shown to 
affect their survival, but the relative contribution of different stresses (such as rapid decompression 
and fluid shear) to overall injury and mortality remains poorly understood. In turn, this makes it 
difficult to assess the risk associated with infrastructure projects, or to develop engineering and 
operation guidelines to reduce the risks of downstream fish passage. 
 
This report details laboratory experiments that determined the tolerance of various species and life 
stages of fish from the MDB to rapid decompression (in hypo/hyperbaric chambers) and elevated fluid 
shear (in a shear flume). Fish were exposed to a wide range of conditions to model the probability of 
injury and mortality. Our ultimate goal was to determine critical thresholds for injury and mortality, 
and develop criteria to protect downstream migrating fish at river infrastructure. We hope these 
criteria can better inform policy relating to the development and management of mini-hydropower and 
irrigation infrastructure to protect downstream migrating fish. 



 Non-technical Summary 15 

Downstream fish passage criteria for the MDB  Boys et al. 

Rapid decompression experiments 
 
Barotrauma is injury sustained following a rapid decrease in water pressure. It sometimes occurs when 
fish are brought rapidly from depth to the surface by anglers, but can also be encountered when fish 
experience sudden momentary drops in water pressure as they pass dams, weirs and hydropower 
turbines. Barotrauma can result from the overexpansion of gas-filled organs, such as the swim bladder 
(Boyle’s law: if the pressure of a gas is decreased, its volume increases). It can also occur if gas comes 
out of blood and body fluids, causing bubbles (known as emphysema) in vasculature and organs 
(Henry’s law: fluids can hold less gas in solution at lower pressures). Research has shown that many 
of these injuries can lead to the eventual death of fish. 
 
The rapid decompression experiments used chambers that could generate rapid drops in water pressure 
to determine the degree of decompression that eggs, larvae and juvenile fish could sustain before 
suffering injury or mortality. Murray cod, golden perch and silver perch were exposed to rapid 
decompression at the egg (golden perch and silver perch), larval (Murray cod, golden perch and silver 
perch) and juvenile (Murray cod and silver perch) stage. These correspond to the life stages at which 
the fish are likely to pass through river infrastructure during downstream migration.  
 
The pressure scenarios we used reflected the broad range of the ratio of pressure changes (RPCs) that 
fish may be exposed to at infrastructure in the MDB. At the lower end of the spectrum, this included 
what may be expected as fish momentarily encounter slightly sub-atmospheric (negative) pressure 
while they pass undershot weirs. The more extreme ranges were more reflective of the sudden, 
momentary and very low pressures that could be expected as fish pass the blades of a hydropower 
turbine. For eggs and larvae, the most extreme RPC tested was ~0.1 (i.e. fish were exposed to 
pressures as low as ~10% of the pressure at which they were acclimated. Juvenile fish were tested 
over a slightly larger range of RPCs, up to ~0.05 (i.e. exposure pressures falling to ~5% of acclimation 
pressure). 
 
For eggs and larvae, there was little evidence that simulated infrastructure passage led to barotrauma 
that resulted in immediate mortality (within 24 hours). There was, however, evidence of non-lethal  
injuries or pressure effects in larvae at the 24-hour mark. More fish were affected as the RPC fell, with 
injury typically occurring once exposure pressures fell below 40% the acclimation pressure. Much of 
this injury involved the deflation of swim bladder, with internal haemorrhaging observed in one 
species and age class. The deflation of the swim bladder was undoubtedly a result of rapid 
decompression, which resulted in a corresponding increase in the volume of gas in the swim bladder. 
However, it was unclear whether the deflation was caused by over-inflation and subsequent rupturing 
of the swim bladder. We present evidence of an alternative explanation, where deflation of the swim 
bladder may have been a result of venting or ‘burping’ of gas through the gut and mouth. Regardless 
of the explanation, the longer-term implications (beyond 24 hours) of this forced deflation of the swim 
bladder, as well as haemorrhaging, remains unknown and warrants further investigation. 
 
Immediate mortality (within 5 minutes) was not observed in many Murray cod or silver perch 
juveniles following simulated infrastructure passage. However, both species experienced a variety of 
injuries resulting from rapid decompression. These included swim bladder rupture, eyes protruding 
from the sockets (exophthalmia), and haemorrhaging of (or emphysema in) internal and external 
organs, such as the heart, liver, kidney, mouth, eye and fins. The percentage of fish injured increased 
as the RPC fell, and threshold responses were typical, where the probability of injury increased 
substantially once the RPC exceeded a certain level. Threshold levels varied substantially between 
species and injury types, ranging from more modest levels of decompression (where exposure 
pressures fell below 70% of acclimation pressure) to more severe scenarios (where pressure fell below 
10% of acclimation pressure). 
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Fluid shear experiments 
 
The effect of exposure to shear stress was tested on eggs (silver perch and golden perch), larvae 
(Murray cod, silver perch and golden perch) and juveniles (Murray cod, silver perch and golden 
perch) in a shear flume. In this flume, fish were exposed to shear of a predefined strain rate created by 
a submerged jet.  
 
Eggs were extremely susceptible to damage and mortality when exposed to a shear stress; physical 
damage to the cell membrane or cellular contents prevented normal hatching. Once strain rate 
exceeded ~150 cm s-1 cm-1, 100% mortality of golden perch and >40% mortality of silver perch eggs 
occurred. Larval fish were also susceptible to injury and mortality following shear exposure. 
However, lower values of shear were more tolerable than higher levels, and susceptibility tended to 
reduce as larvae aged and approached juvenile metamorphosis. Injuries were observed in more than 
one-third of larvae studied, and predominantly involved fin damage. It was not possible to determine 
which injuries were associated with eventual death in most cases. But, it was clear that Murray cod 
between the ages of 9 and 13 days post hatch were vulnerable to injury of the yolk sac, which would 
lead to eventual death. Once the three species had reached the juvenile stage, they had become quite 
resistant to shear stress. Although fin damage was observed in more than one-third of juveniles 
studied, there was little evidence that shear resulted in mortality up to 24 hours post-exposure. 
 
Implications for fisheries managers and infrastructure engineers 
 
This study provides downstream fish passage criteria based on the best available data from fish 
passage survival studies for MDB species. Identifying the mechanisms responsible for fish passage 
risks will help fisheries managers and infrastructure engineers determine the appropriateness of 
infrastructure works, and structural and operational conditions, to reduce these risks. 
 
The following downstream fish passage criteria are based upon thresholds of decompression and fluid 
shear. Exceeding these thresholds will lead to a substantial increase in injury or mortality. The criteria 
are general in nature, and attempt to synthesise results that often varied across multiple species and 
injury types. The criteria should therefore only be applied after careful consideration of the results and 
discussion contained within individual chapters of this report.  
 
Note that these criteria provide guidance only. Specific decisions regarding acceptable levels of 
mortality, and which species and age classes are of most importance, may differ between projects and 
should be considered by fisheries managers and engineers on a case-by-case basis. Nevertheless, the 
criteria provide a good indication to where certain risks lie, and suggestions have been provided as to 
how to reduce these risks. 
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Generalised downstream fish passage criteria for Murray–Darling Basin species relating to levels of 
decompression and fluid shear required to minimise injury and mortality of fish  
Life stage Decompression Fluid shear 
 
Egg 

 
No threshold recommended 

 
Should not exceed 150 cm s-1 cm-1 

 
Larvae 
 
 

 
No threshold recommended, but 
caution should be exercised once 
exposure pressures fall below 40%a  

 
Should not exceed ~10 cm s-1cm-1 in 
areas and times of suspected larval 
Murray cod larval drift. 
Otherwise should not exceed 
~620 cm s-1 cm-1 

 
Juvenile 

 
 

 
Exposure pressures should not fall 
below 60% of the acclimation 
pressure 

 
No threshold recommended 

a Based on evidence of some pressure effects where long-term impacts on survival are uncertain 
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1. GENERAL INTRODUCTION 

1.1 Downstream fish passage at river infrastructure 

River infrastructure, such as dams, weirs, regulators and hydropower facilities, play an important role 
in regulating variable and often unpredictable river flows and generating electricity, thus improving 
water, food and energy security. However, instream infrastructure has become so pervasive in the 
world’s river systems that it has affected freshwater ecosystems and led to significant declines in the 
value of fisheries (Gehrke et al. 1995, Dudgeon et al. 2006, Venter et al. 2006, Barlow et al. 2008). 
Much of the impact has come though a change in natural flow regimes, degradation of habitat and 
water quality, and an interruption of important upstream and downstream fish migrations (Kingsford 
2000, Agostinho et al. 2008). 
 
Significant investment has been made over the last century into the restoration of upstream passage for 
juvenile and adult fish. This has focused on the research and development of upstream fishways at 
dams and weirs (Gough et al. 2012). But, for many species, safe downstream passage can be just as 
critical at various stages of their life (Lucas and Baras 2001). Some species migrate downstream as 
larvae or juveniles from freshwater spawning grounds to the sea (anadromy, e.g. salmonids), while 
others undertake these seaward breeding migrations as adults (catadromy, e.g. eels and bass) 
(McDowall 1988). No less important are the downstream migrations undertaken by larval, juvenile 
and adult fish residing entirely within freshwater (potamodromy), with seasonal downstream 
movements being linked to either breeding, feeding or dispersal (Lucas and Baras 2001).  
 
A downstream mode of migration exposes many fish species of different life stages to injury and 
mortality when they encounter river infrastructure (Larinier and Travade 2002). Field and laboratory 
studies suggest that the primary causes of fish injury during downstream passage through instream 
structures include elevated fluid shear and turbulence, rapid and excessive pressure reduction 
(decompression), and collision with fixed or moving objects (e.g. turbine blades, gates or piers) (Cada 
1990, Neitzel et al. 2000, Neitzel et al. 2004, Deng et al. 2006, Deng et al. 2010, Brown et al. 2012a).  
 
Fish injuries often result from barotrauma and fluid shear. Barotrauma (rapid decompression) injuries 
typically include swim bladder rupture or emphysema (formation of bubbles) and haemorrhaging 
(bleeding) in the fins, musculature and organs (Brown et al. 2012a). Fluid shear occurs when two 
water masses of different velocities and direction interact (Cada et al. 1999). When a fish is caught 
between two interacting water masses and the combined force exceeds the critical threshold  of fluid 
shear that the fish can withstand, then it is likely to be injured. Fluid shear can result in loss of scales, 
haemorrhaging, and eye, skin and skeletal damage (Neitzel et al. 2004). 
 
In some instances, the data gathered relating to these mechanisms of injury have been used to refine 
the design and operation of hydropower facilities to reduce damage to fish (Cada 2001). But, much of 
the research has been undertaken in North America and Europe, and has typically focused on high-
dam hydropower turbines, and diadromous species such as salmonids and eels (e.g. Cada 1990, 
Larinier 2001, Stephenson et al. 2010, Brown et al. in press). There has been comparatively far less 
consideration of other migratory fish species, or of river infrastructure other than large hydropower 
dams (Gough et al. 2012, Brown et al. in press), including smaller weirs and mini-hydropower plants.  
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1.2 Concerns for fish welfare at river infrastructure in the Murray–Darling Basin 

The Murray–Darling Basin (MDB) has seen significant investment in restoring upstream fish passage 
(Mallen-Cooper and Brand 2007, Koehn and Lintermans 2012). Despite increasing recognition of the 
importance of downstream migration to MDB species, there has been little consideration given to how 
best to design and manage instream weirs and water diversions to afford greater protection to 
downstream migrants (Lintermans and Phillips 2004). 
 
Several potamodromous fish species inhabiting the MDB exhibit extensive downstream migrations. 
Golden perch (Macquaria ambigua) and silver perch (Bidyanus bidyanus) have buoyant eggs, which 
disperse large distances downstream (Reynolds 1983). These species, along with others such as 
Murray cod (Maccullochella peelii), use downstream drift to disperse over large distances during the 
larval stage (Humphries et al. 2002, Humphries and King 2004, Koehn and Harrington 2005). In 
addition to eggs and larvae, a significant number of small and large-bodied adult fish species also 
undertake large-scale downstream movements, frequently encountering weirs and other infrastructure 
(O'Connor et al. 2003, Lintermans and Phillips 2004, O'Connor et al. 2005, O'Connor et al. 2006).  
 
Recognition of the importance of downstream migrations to many MDB fish species has raised 
concern that the prevalence of river infrastructure may be contributing to population declines. 
Australia ranks in the top 15 countries in the world in terms of its number of large dams (n=517, 
ICOLD World Register of Dams data, cited in Gough et al. 2012). When smaller regulatory structures, 
such as weirs, are also considered, the number of barriers to migration number grows significantly. In 
the MDB alone, an estimated 10,000 dams and weirs regulate flows (Baumgartner 2005). 

1.2.1. Irrigation structures 

More than 80% of main channel weirs in the Murrumbidgee, Macquarie, Namoi and Gwydir rivers 
employ an ‘undershot’ design. In these weirs, water is discharged underneath a gate, as opposed to 
over a gate (NSW Department of Primary Industries 2006). Recent research has associated this design 
with the injury and mortality of fish (Baumgartner et al. 2006, Baumgartner et al. 2013). At an 
experimental undershot weir, large proportions of golden perch (> 90%), silver perch (> 90%) and 
Murray cod (> 50%) larvae died when passed downstream (Baumgartner et al. 2013). A large 
proportion of small-bodied native fish, such as Australian smelt (Retropinna semoni) and unspecked 
hardyhead (Craterocephalus stercusmuscarum fulvus), also died (>90%). Adult life stages of large-
bodied species were also affected, but to a much lesser degree; adult golden perch (82%), silver perch 
(70%) and Murray cod (32%) suffered only minor injuries (Baumgartner et al. 2013). Baumgartner et 
al. (2013) used computational fluid dynamics modelling to determined that undershot weirs were 
characterised by higher values of shear, turbulence and rapid pressure changes. Follow-up research 
employing autonomous hydraulic sensors (Sensor Fish: Deng et al. 2007) at undershot weirs in the 
field supported these results (Boys et al. 2013). But despite this research, it remains unclear which, if 
any, of these conditions contribute to injury and mortality, in what combination and to what extent. 
 
A significant finding of Baumgartner et al. (2013) was that fish mortality and injury rates could be 
altered at undershot weirs by changing hydraulics through simple design modifications. In that study, 
the addition of an upstream flow deflector and downstream hydraulic jump actually increased 
mortality, rather than decreasing it. Far from being a discouraging finding, this demonstrated that the 
design and hydraulic performance of river infrastructure could be modified to influence their impact 
on fish welfare. It also highlights that ‘fish-friendly’ design options can only be developed once we 
understand which hydraulic parameters should be altered, and to what degree.  
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1.2.2. Hydropower facilities 

Hydropower facilities have created significant fish welfare issues throughout the world (Turnpenny et 
al. 2000, Dugan et al. 2010). Hydropower is currently the largest source of renewable energy globally, 
contributing nearly 16% of the world’s total energy production in more than 160 countries. As of 
2011, hydropower contributed 63% of the renewable energy mix for New South Wales (NSW) (NSW 
Government 2012). Further development of hydropower is likely to be driven through the 
implementation of global climate change policies (Paish 2002, Geoscience Australia and ABARE 
2010). Regions such as China, North America, OECD Europe, South America and Africa are expected 
to continue large-scale hydroelectricity generation (Geoscience Australia and ABARE 2010).  
 
Low topography and variable rainfall will limit further development of large-scale hydropower in 
south-eastern Australia (Geoscience Australia and ABARE 2010). Instead, much of the potential for 
hydropower expansion lies in existing weirs and irrigation supply networks for low-head (<6 m) mini-
hydropower installations (typically less than 10 MW). The feasibility of such projects is being 
explored in the MDB and coastal catchments (Baumgartner et al. 2012).  
 
Mini-hydropower is the most frequent type of hydropower within Australia, accounting for 54% of all 
projects in 2009 (Geoscience Australia and ABARE 2010). More than 1,000 MW in potential further 
generation may be possible on several dozen sites throughout NSW (NSW Government 2012). As an 
example, a new 3.7-MW hydropower plant was completed at Prospect Reservoir in Western Sydney 
in late 2012. But, the growth of mini-hydropower is being seen beyond NSW, and worldwide growth 
is predicted in regional and developing countries (Paish 2002). 
 
It is often suggested that mini-hydropower may provide safer downstream fish passage than traditional 
high-head dam facilities, based on a lower operating head. But, there is little evidence to support this 
general assertion, and there is still concern over the suitability of mini-hydropower in natural river 
systems containing threatened populations of migratory fish (Larinier 2008). Research into the 
hydraulic tolerances of migrating fish species and the associated performance of different hydropower 
technologies is required. Such research will guide policy for the development and management of 
mini-hydropower projects that are sympathetic towards threatened aquatic communities in NSW 
(Baumgartner et al. 2012, Boys et al. 2013).  

1.3 Scope and research objectives 

Laboratory experiments have determined the tolerance of various species and life stages of fish from 
the MDB to rapid decompression and elevated fluid shear. The species under investigation were 
Murray cod, golden perch and silver perch, and the life stages were eggs, larvae and juveniles 
(Table 1). The combination of species and life stages were chosen because they exhibit downstream 
migrations that could expose them to river infrastructure. As explained in Section 1.2, golden perch 
and silver perch have buoyant eggs, which disperse large distances downstream (Reynolds 1983). 
These species, along with Murray cod, use downstream drift to disperse over large distances during 
the larval stage (Humphries et al. 2002, Humphries and King 2004, Koehn and Harrington 2005). In 
addition to eggs and larvae, these species also undertake large-scale downstream movements as 
juvenile and adults, exposing them to passage through weirs and other infrastructure (O'Connor et al. 
2003, Lintermans and Phillips 2004, O'Connor et al. 2005, O'Connor et al. 2006). 
 
In the first group of experiments (Chapter 2), hypo/hyperbaric chambers were used to simulate rapid 
decompression, which occurs during passage through irrigation and hydropower infrastructure. Egg, 
larval and juvenile fish were exposed to a wide range of severity of decompression to model injury 
and/or mortality rates and determine any critical thresholds for injury. Chapter 3 describes 
experiments where eggs, larvae and juveniles were exposed to various degrees of fluid shear in a 
flume. As with the decompression experiments, injury and/or mortality models were created across a 
range of shear values to determine any critical thresholds. In Chapter 4, the key findings of both 
studies were synthesised and recommendations made to inform policies relating to the development 
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and management of mini-hydropower and irrigation infrastructure to protect migrating fish in the 
MDB.  
 
 
 
 
Table 1. Murray–Darling Basin fish species and life stages examined during the rapid decompression and shear 
experiments. 
 

Life history stage Barotrauma (Chapter 2) Fluid shear (Chapter 3) 
      
Egg Golden perch (Macquaria ambigua) Golden perch 

  Silver perch (Bidyanus bidyanus) Silver perch 

   
Larvae Murray cod (Maccullochella peelii) Murray cod 

 Golden perch Golden perch 

 Silver perch Silver perch 

      
Juvenile Murray cod Murray cod 

 Silver perch Golden perch 
  Silver perch 
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2. RAPID DECOMPRESSION 

2.1 Introduction 

Barotrauma is injury sustained following a rapid decrease in hydraulic pressure (Brown et al. 2014). 
Decompression can cause barotrauma in fish in two ways (Brown et al. 2012b). First, a reduction in 
pressure causes a reciprocal increase in gas volume (i.e. for every halving of pressure, gas volume 
doubles: Boyle’s law). Injury can thus result from the overexpansion of gas-filled organs, such as the 
swim bladder. Second, fluids (including blood) can hold greater amounts of gas in solution when 
under pressure (Henry’s law). Therefore, when pressure is reduced, gas may be forced out of blood 
and body fluids, causing bubbles (referred to as emphysema) to form in vasculature and organs. 
 
Injuries that typically result from these phenomena can include rupture of the swim bladder, 
emphysema of vasculature and organs, dislocation of the eyes (exophthalmia), and haemorrhage 
(bleeding) associated with ruptured vasculature and damage to internal organs, such as the brain, gills 
and heart (Cramer and Oligher 1964, Beyer et al. 1976, Brown et al. 2012b, Pflugrath et al. 2012). 
Many of these injuries have been associated with eventual death of fish (McKinstry et al. 2007). 
 
Barotrauma is often associated with marine and freshwater angling, where fish are brought to the 
surface from depth (e.g. Gravel and Cooke 2008, Schreer et al. 2009, Dowling et al. 2010, Hall et al. 
2013) (Figure 1a). But, there is far greater potential for barotrauma when fish migrate downstream 
through river infrastructure (Figure 1b). This is because while an angled fish will never be exposed to 
pressures below atmospheric, sub-atmospheric pressures are not uncommon through hydropower 
turbines (Deng et al. 2010) and have also been reported at irrigation weirs (Boys et al. 2013). 
Furthermore, while angled fish are only susceptible once they are large enough to be targeted by 
anglers, migrating fish may be exposed to barotrauma at infrastructure as eggs, larvae, juveniles and 
adults. 
 
Barotrauma injuries tend to be more frequent and severe the lower the exposure pressure is as a 
percentage of the pressure to which a fish is acclimated before exposure. In this report, this is referred 
to as the ratio of pressure change (RPC). This can be illustrated by comparing an angled fish and one 
migrating through a hydropower turbine. A fish angled from a depth of 100 m (~1109 kPa) and 
brought to the surface (atmospheric or ~100 kPa) encounters a minimum exposure pressure of 9% its 
acclimation pressure (100÷1109). However, a fish acclimated in a dam reservoir at 20 m depth 
(~300 kPa) that then passes a hydropower dam may be exposed to minimum pressures as low as 7 kPa 
at the turbine (Deng et al. 2010), or 2.3% of its acclimation pressure. According to Boyle’s law 
governing gas volume at different pressures, the swim bladder of the angled fish would have expanded 
to 11 times the initial volume, whereas the swim bladder of the turbine-passed fish would have 
expanded to 43 times its initial volume. The turbine-passed fish will also experience this 
decompression in less than a quarter of a second (Deng et al. 2010), whereas the angled fish 
experiences it at a much slower rate (more than ~1.6 minutes, assuming a typical retrieval rate of 
1 m/s: Hughes and Stewart 2013). 
 
When trying to make general predictions and comparisons of the risks to fish posed by the broad range 
of current and future infrastructure developments, it is prudent to compare barotrauma rates over a 
large range of RPCs. As illustrated by the previous example, the severity of exposure to barotrauma 
will depend both on the depth at which a fish is migrating (acclimation pressure) and the lowest 
(nadir) exposure pressure during infrastructure passage. Both of these pressures can vary substantially. 
The nadir pressure that fish are exposed to can vary significantly between different migration paths 
(e.g. a spillway, versus an undershot weir, versus a turbine). For most species, the depth of migration 
(and therefore acclimation pressure) is poorly understood (Pflugrath et al. 2012, Brown et al. 2014).  
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Figure 1. Barotrauma injury in adult fish and can occur following offshore angling or after infrastructure 
passage 
a) Angled snapper (Pagrus auratus) with prolapsed swim bladder (Photo: Julian Hughes, NSW DPI). 

 
b) Catfish (Pimelodus maculatus) with a prolapsed stomach caught in the tailrace of a hydropower dam in Brazil 
(Photo: Carlos Bernardo M. Alves, Bio-Ambiental Consultancy). 
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In this chapter, we outline experiments conducted on eggs, larvae and juveniles of three 
potamodromous fish species native to the Murray–Darling Basin (MDB) of south-eastern Australia: 
Murray cod, golden perch and silver perch. Hypo/hyperbaric chambers were used to simulate rapid 
decompression as experienced by fish during downstream passage through river infrastructure, 
ranging from below what may be expected at low-head weirs to what could be experienced at large-
head hydropower turbines. The relationships between the RPC and the probability of different 
barotrauma injuries were quantified. The data was used (where possible) to predict key thresholds for 
decompression, which once exceeded, resulted in significant increases in the types and probability of 
injury. 

2.2 Methods 

2.2.1. Fish production and handling 

Egg and larval experiments at the Narrandera Fisheries Centre 
 
Adult golden and silver perch were induced to spawn at the Narrandera Fisheries Centre (NFC) during 
their natural reproductive season (January to February) using Ovaprim®, an analogue of salmon 
gonadotropin-releasing hormone. Two days after induction, the adults spawned overnight and within 
six hours the eggs were collected and placed in an aerated 15-L bucket until they were either used 
within 24 hours for the egg experiments, or subsequently hatched for the larval experiments. 
 
Once hatched, silver perch larvae were kept prior to experimentation in aerated trays (50 cm long, 
50 cm wide and 15 cm deep). Experiments were undertaken on silver perch larvae at 10 days post 
hatch (DPH) and 22 DPH. From 3 DPH, larvae were sustained using a daily feed of newly hatched 
Artemia nauplii and a pulverised commercial pellet. Unlike silver perch larvae, golden perch are more 
difficult to maintain in hatchery conditions. Therefore, at 3 DPH, golden perch were stocked into a 
large pond (3,600 m2 and ~ 3 ML) at the NFC and allowed to feed naturally on plankton. At 10 and 
18 DPH, larvae were collected from the pond using a hand net and kept in aerated trays (50 cm long, 
50 cm wide and 15 cm deep) for 24 hours prior to experimentation. No supplementary feeding 
occurred while in these trays.  
 
Murray cod eggs were harvested from specially designed spawning boxes in earthen ponds at the NFC 
in November 2012. The eggs were kept for 7–10 days in incubating tanks and once hatched, larvae 
were kept prior to experimentation in aerated trays (50 cm long, 50 cm wide and 15 cm deep). 
Experiments on Murray cod larvae began 3 DPH and concluded at 25 DPH prior to the completion of 
juvenile metamorphosis. Because Murray cod undergo direct development (sensu Balon 1984), they 
have no true larval interval, and free embryos begin to feed while still retaining stores of yolk (King 
2002). From 17 DPH, larvae were sustained using a daily feed of newly hatched A. nauplii.  
 
All tanks or trays holding parental fish, eggs and larvae at the NFC were supplied with flow-through, 
bore-drawn water (~10 L min-1). Daily water quality measurements were taken from the larvae 
holding trays, supply tank and barotrauma chambers. Throughout the study, the mean (± SE) pH was 
8.08 ± 0.02 (range of 7.95–8.24); conductivity was 14.6 ± 1.38 ms cm-1 (9.40–20.10); dissolved 
oxygen was 7.15 ± 0.28 mg L-1 (5.07–7.67); total dissolved gas saturation was 101.41 ± 0.34% 
(99.72–101.86); and temperature was 18.46 ± 0.23 oC (17.0–19.10). There were no observations of 
disease and the fish appeared healthy throughout the entire study. 
 
Juvenile experiments at the Port Stephens Fisheries Institute 
 
Juvenile Murray cod were obtained from Uarah Fisheries, Grong Grong, New South Wales (NSW), 
and juvenile silver perch from Silverwater Native Fish, Grong Grong, NSW. Fingerlings were 
transported to the Port Stephens Fisheries Institute (PSFI) in plastic bags (approximately 200 fish per 
bag) filled with 20 L dam water and sealed with a pure oxygen atmosphere. To minimise the risk of 
stress-related disease following transport, the fish were given a prophylactic salt treatment. This 
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involved raising the salinity of the system to 5 ppt for three weeks, after which it was maintained at 
approximately 4 ppt throughout the study.  
 
While at PSFI, the fish were held in 2,000-L circular polyethylene holding tanks (Figure 2). Bore-
drawn water was used to fill the tanks and the total volume of the system (9,000 L) was constantly 
exchanged between all tanks via a heat exchanger and biological filter. A 5% water change was 
carried out every two weeks, which was adequate to maintain water quality, given the low stocking 
density (which did not exceed ~0.9 g L -1). Water quality (temperature, pH, dissolved oxygen, total 
dissolve gas saturation, salinity, conductivity, ammonia and nitrite) were measured daily. Throughout 
the study, the mean (± SE) pH was 8.11 ± 0.04 (range 7.94–8.21); conductivity was 8.59 ± 
0.23 ms cm-1 (7.47–9.20); dissolved oxygen was 7.11 ± 0.07 mg L-1 (6.92–7.46); total dissolved gas 
saturation was 101.8 ± 0.50% (100.39–104.39); and temperature was 26.84 ± 0.29 oC (25.90–27.90). 
 
Fish were fed twice daily on a mix of frozen blood worms and commercial pellet (Ridley Aqua-Feed 
Native Fish Start, 1–3 mm). Murray cod were housed at PSFI for approximately two months prior to 
experimentation in March 2013. At the time of experimentation, their average length was 66.1 mm 
total length (± 0.3 SE and ranging from 80.0–54.0 mm) and average weight was 3.2 g (± 0.1 SE and 
ranging from 5.8–1.7 g). Silver perch were housed at PSFI for approximately seven months prior to 
experimentation in April 2013. At the time of experimentation, their average length was 80.0 mm fork 
length (± 0.7 SE and ranging from 112.0–45.0 mm) and average weight was 7.6 g (± 0.2 SE and 
ranging from 19.6–0.9 g). Once the barotrauma experiments had begun for a given species, they were 
completed within 10 days. 
 
 
 
 
Figure 2. Experimental facilities at the Port Stephens Fisheries Institute showing 2000-L tanks in which juvenile 
fish were housed, adjacent to the mobile laboratory containing the hypo/hyperbaric chambers 
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2.2.2. Hypo/hyperbaric chambers 

Two chambers capable of generating rapid and sustained changes in water pressure were used to 
simulate decompression during infrastructure passage (Figure 3). Each chamber was constructed from 
16-mm-thick stainless steel plate with a 16-mm-thick laminate glass viewing window and a sealable 
hatch through which fish could be loaded (Figure 4). Flow-through water was delivered to each 
chamber (averaging ~50 L min-1) using a pump (Model I91340615; Grunfos Ptd Ltd, Adelaide, 
Australia), being drawn and recirculated through the same tanks in which the fish were being held 
prior to experimentation. 
 
A computer program with a graphical user interface (GUI; LabView, National Instruments 
Corporation, Austin, Texas, United States) controlled an electric actuator valve (Model OM-1; AVFI, 
Bundoora, Victoria, Australia) on the outlet of each chamber, to generate pre-programmed acclimation 
pressures within the chambers and to simulate a particular depth of migration prior to simulated 
passage. The desired pressure was maintained by the GUI using an active feedback loop with two 
pressure sensors sampling chamber pressure at 2000 Hz. The readings of the pressure sensors were 
validated by running various decompression scenarios with Sensor Fish (Deng et al. 2007) in the 
chambers, and comparing the pressure data collected by the Sensor Fish with that collected by the 
chamber sensors. 
 
After fish were placed in a chamber, the chamber was sealed and all air removed using a bleed valve 
on the lid. A pre-programmed acclimation pressure was maintained by the actuator valve under 
control of the GUI. After the desired acclimation time had been reached (applicable to the juvenile 
experiments, see sections 2.2.5 for further details), ball valves on the chamber inlet and outlet were 
simultaneously closed and the pump switched off, effectively isolating the chamber at the set 
acclimation pressure prior to decompression. Decompression was achieved by the GUI using a pre-
loaded pressure profile (.csv file) to activate a Linmot® linear motor (Model HS01-37x166; NTI 
AG Linmot, Sprietenbach, Switzerland) that withdrew and/or inserted a piston from the chamber to 
create the desired pressure profile. Immediately following decompression, the GUI displayed the 
actual pressure measurements sampled at 2000 Hz and saved this data to an exportable file. This 
exportable file was used to obtain both the acclimation and the nadir exposure pressure to calculate the 
RPC. 
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Figure 3. Hypo/hyperbaric chamber used to simulate rapid decompression during river infrastructure passage  
 
a) Chamber 

 
b) Graphical user interface 
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Figure 4. Hypo/hyperbaric chamber showing the main components  
 
A) actuator rod, B) removable hatch, C) temperature and pressure sensors, D) laminated glass viewing 
window, E) actuator valve, F) ball valves, G) piston, and H) acrylic holding cylinder, which was used 
to hold larval fish, but not eggs or juveniles 
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2.2.3. Egg experiments 

Silver perch and golden perch eggs (Figure 5) were rapidly decompressed in hypo/hyperbaric 
chambers from atmospheric pressure (~101 kPa) to one of a range of nadir pressures to simulate 
infrastructure passage (Figure 6) over a range of RPCs (Table 2). Decompression occurred at speeds 
between 0.1 and 0.5 seconds, equating to RPCs between 63.9 and 359.1 kPa s-1. Such rates and RPCs 
correspond to ranges often observed at river infrastructure such as undershot weirs (Boys et al. 2013) 
and hydropower facilities (Deng et al. 2010, Boys et al. 2013). 
 
Twenty-four hours prior to experimentation, viable eggs were siphoned from their holding trays using 
vinyl tubing and held in aerated 700-mL plastic jars (Figure 7). Ten eggs were placed in each jar, with 
each jar corresponding to a different test group of eggs subjected to one of 10 RPC treatments 
(Table 2). Each treatment was replicated three times, making a total of 30 jars of test groups. The 
aerated jars were placed in trays supplied with flow-through bore-drawn water to maintain a constant 
water temperature (Figure 7). The jars of eggs were decompressed one at a time in the chambers. This 
involved replacing the plastic lid of a jar with a fine mesh cover and sealing the jar in a chamber for 
5 minutes at atmospheric pressure (~101 kPa), before subsequently decompressing to one of 10 
possible nadir pressures, ranging from 101 to 10 kPa. Following decompression, the jar of eggs was 
brought back to atmospheric pressure, removed from the chamber and placed back into the holding 
trays for 24–48 hours. After this time, the eggs were examined to determine how many had 
successfully hatched and how many had died. 
 
 
Figure 5. Golden perch eggs 
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Figure 6. The exposure profile used to simulate rapid decompression during infrastructure passage. In this 
example, a rapid fall from an acclimation pressure 101 kPa to a nadir pressure of ~10 kPa is experienced in 
0.3 seconds, corresponding to a ratio of pressure change RPC of ~0.1 (10÷101) 
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Table 2. Test groups of egg and larvae fish were subjected to one of 10 rapid decompression scenarios to 
simulate river infrastructure passage. Three replicate groups were tested at each ratio of pressure change to 
ensure a sufficient spread of data for regression and the generation of mortality and injury models 

Pressurea (kPa) 

 

Ratio of pressure change (RPC)ab   
  

Acclimation (A) Exposure nadir (E) (E/A) (A/E)  

101 101 
 

1.00 1.00 
  
  

101 79  0.78 1.28  
101 61  0.60 1.65  
101 48  0.48 2.12  
101 37  0.37 2.72  
101 29  0.29 3.49  
101 23  0.23 4.48  
101 18  0.18 5.75  
101 14  0.14 7.39  
101 11  0.11 9.49  

        
a The pressures presented in this table are a guide to the approximate pressures achieved. Measurements obtained from 
pressure sensors in the chambers were used to determine the actual exposure acclimation and exposure nadir pressures for the 
calculation of RPCs for the regressions. 
b The RPC (E/A) was used in the regression modelling and relates to the proportion that the lowest exposure pressure was of 
the acclimation pressure. E.g. a RPC of 0.3 means that the nadir exposure pressure was 30% of the acclimation pressure. The 
ratio of pressure change is also shown as A/E, as this number relates directly to the degree of expansion of gas governed by 
Boyle’s law. E.g. when A/E= 3, the swim bladder would expand three times in volume. 
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2.2.4. Larval experiments 

Silver perch, golden perch and Murray cod larvae were rapidly decompressed in hypo/hyperbaric 
chambers to simulate river infrastructure passage as per the experimental design outlined for the egg 
experiments (Table 2). Approximately 12–24 hours before experimentation, larvae were individually 
siphoned using vinyl tubing from their holding trays into aerated 700-mL plastic jars (Figure 7). Ten 
larvae were placed in each jar, with each jar corresponding to a different test group of fish. For 
experimentation, a test group of fish was poured from its holding jar into a clear acrylic cylinder 
(11 cm Ø and 20 cm high) with a mesh screen lid. The cylinder was then placed in the chamber 
(Figure 4). Following decompression, larvae were returned to individual aerated jars. Immediately 
following decompression and then again at ~24 hours post experimentation, the number of dead larvae 
in each test group were counted. At the 24-hour point, all remaining larvae were euthanased using a 
solution of 100 mg L-1 ethyl-p-amino benzoate (benzocaine), transferred to a Petri dish, and examined 
under a dissecting microscope fitted with a digital camera to determine the presence of external and 
internal injuries. The injuries looked for included exophthalmia; decapitation; internal haemorrhaging; 
herneation of the gut, or expulsion of digestive contents or bile; emphysema of the body cavity, eyes 
or fins; and evidence of swim bladder rupture. Because the larvae were too small to identify rupture 
points in the swim bladder, a visible swim bladder was considered to be intact, whereas the absence of 
a visible swim bladder was treated as being deflated, and thereby an indication of swim bladder 
rupture. 
 
 
Figure 7. Aerated jars used to hold test groups of eggs and larvae before and after decompression in the 
chambers 
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2.2.5. Juvenile experiments 

Silver perch and Murray cod juveniles were rapidly decompressed (Figure 6) in hypo/hyperbaric 
chambers and subjected to one of a combination of various acclimation and nadir pressures to simulate 
infrastructure passage over a range of RPCs (Table 3). Ten fish were sealed in a chamber at a time, 
corresponding to a single test group. Since juvenile silver perch and Murray cod are physoclistous, 
and can regulate their swim bladder volume through a vasculature rete without the need to physically 
gulp air. They are likely to have the capacity to migrate at greater depths than larvae (who have not 
fully developed an active rete) or eggs. Therefore, juveniles were tested over a larger range of RPCs 
than the earlier life stages (Table 3). To achieve the three larger RPCs, it was necessary to acclimate 
fish at pressures above atmospheric (ranging from ~122–200 kPa or ~2–10 m depth) for 
approximately 24 hours. After this time, all fish were judged to have acclimated fully, because they 
had changed from being negatively buoyant (swimming head up), to neutrally buoyant (able to 
maintain their vertical position in the water column without actively swimming and tail-beating). The 
speed of pressure change achieved was as reported for the egg experiments (Section 2.2.3). 
 
 
Table 3. Test groups of juvenile fish were subjected to one of 13 rapid decompression scenarios to simulate river 
infrastructure passage. Three replicate groups were tested at each ratio of pressure change to ensure a sufficient 
spread of data for regression and the generation of mortality and injury models 

Pressurea (kPa) 

 

Ratio of pressure change (RPC)ab   
  

Acclimation (A) Exposure nadir (E) (E/A) (A/E)  

101 101 
 

1.00 1.00 
  
  

101 79  0.78 1.28  
101 61  0.60 1.65  
101 48  0.48 2.12  
101 37  0.37 2.72  
101 29  0.29 3.49  
101 23  0.23 4.48  
101 18  0.18 5.75  
101 14  0.14 7.39  
101 11  0.11 9.49  
122 10  0.08 12.20  
156 10  0.06 15.60  
200 10  0.05 20.00  

      
a The pressures presented in this table are a guide to the approximate pressures achieved. Measurements obtained from 
pressure sensors in the chambers were used to determine the actual exposure acclimation and exposure nadir pressures for the 
calculation of RPCs for the regressions. 
b The RPC (E/A) was used in the regression modelling and relates to the proportion that the lowest exposure pressure was of 
the acclimation pressure. E.g. a RPC of 0.3 mean that the nadir exposure pressure was 30% of the acclimation pressure. The 
ratio of pressure change is also shown as A/E, as this number relates directly to the degree of expansion of gas governed by 
Boyle’s law. E.g. when A/E= 3, the swim bladder would expand three times in volume. 
 
 
After decompression, all fish were observed in the chambers for five minutes. After this time, the 
number of dead or disorientated fish was recorded. All fish were then removed from the chamber and 
euthanased in a solution of 100 mg L-1 ethyl-p-amino benzoate (benzocaine) and immediately taken 
for autopsy (Figure 8). The length and weight of fish were measured and they were inspected for 
various external and internal injuries typical of barotrauma (Table 4). 
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Figure 8. At autopsy, fish were examined for signs of barotrauma 
 
a) External examination 

 
 
b) Internal examination 
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 Table 4. External and internal barotrauma injuries quantified in juvenile fish 
 
Organ – Condition Reference photographa 

Skin – Haemorrhage Figure 30 

Skin – Emphysema Figure 31 

Cloaca – Bloodshot Figure 32 

Prolapsed gut Figure 33 

Abdomen – Distended No photo 

Fins – Haemorrhage Figure 34 

Fins – Emphysema Figure 35 

Pharyngo-clitheral membrane – Emphysema Figure 36 

Eyes – Exophthalmia Figure 38 

Eyes – Haemorrhage Figure 39 

Eyes – Emphysema Figure 40 

Operculum – Haemorrhage No photo 

Operculum – Emphysema Figure 37 

Gills – Haemorrhage Figure 41 

Gills – Emphysema Figure 42 

Mouth – Haemorrhage Figure 43 

Mouth – Emphysema Figure 44 

Mouth – Prolapsed gut No photo 

Viscera – Haemorrhage Figure 45 

Viscera – Mesentery emphysema  Figure 46 

Stomach – Haemorrhage No photo 

Heart – Haemorrhage Figure 48 

Heart – Emphysema Figure 47 

Liver – Haemorrhage Figure 49 

Liver – Emphysema Figure 50 

Spleen – Haemorrhage No photo 

Swim bladder – Ruptured Figure 53 

Kidney – Haemorrhage Figure 51 

Kidney – Emphysema Figure 51 & Figure 52 
aSee Appendix 1 for photographs. All reference photographs are taken from fish subjected 
to rapid decompression as per the methods outlined in this report, although they do 
include some species not covered in this report.  
  

2.2.6. Statistical methods and modelling 

For the egg experiments, logistic regression was used to determine whether the total mortality rate was 
influenced by RPC (E/A). For the larval experiments, logistic regression models were first fitted 
including DPH as a fixed factor. Both larval and juvenile injury data were also analysed using linear 
piecewise regression (Toms and Lesperance 2003). This approach generated ‘broken-stick’ models, 
where two lines of different slope join at a ‘breakpoint’. The breakpoint was used as an objective 
means of estimating thresholds in RPC (x), where there was a substantial change in the probability of 
injury (y). Such an approach has been used previously to determine ecological and geomorphological 
thresholds (Ryan et al. 2002, Toms and Lesperance 2003). An abrupt breakpoint approach was used 
and confidence intervals calculated of all threshold estimates, as per the methods of Ryan et al. 
(2002). Two simple linear regression equations were fit to the data, one above and one below an 
estimated initial breakpoint (c). The parameters from these two initial regression equations and the 
estimated breakpoint were then used as the starting parameters in a non-linear model. These starting 
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estimates do not influence the final parameters in the broken-stick models, but were used to optimise 
the likelihood of the models converging, because poor starting parameters can result in models not 
converging (Ryan and Porth 2007). The NLIN procedure in SAS (Inc. 2011) and the Marquardt 
iterative method were used to determine parameter estimates for the intercept (a1), slope of the 
relationship below the cut-point (b1), slope of the relationship above the cut-point (b2), and the cut-
point (c) for each injury response variable for each species: 
 
y = a1 + b1x    for x ≤ c    Eq.1 
y = {a1 + c(b1 – b2)} + b2x  for x > c    Eq.2 
 
Models that did not converge were disregarded. For those that converged, equations 1 and 2 were used 
to generate the predicted regression lines, which were plotted with the raw data. Wald confidence 
intervals for the threshold cut-point (c) were also plotted to display the range of RPCs possibly 
containing the injury threshold. 
 

2.3 Results  

2.3.1. Eggs 

Mortality was generally higher for silver perch eggs than for golden perch eggs (Figure 9). However, 
this species difference was unlikely to be related to barotrauma, because egg mortality was not 
significantly related to RPC for either species (golden perch χ2 = 0.001, df = 1, p = 0.993; silver perch 
χ2 = 0.677, df = 1, p = 0.41).  
 
 
 
Figure 9. The probability that silver perch and golden perch eggs will die before hatching, after being exposed 
to simulated infrastructure passage across a range of ratio of pressure changes (RPC). Each point represents the 
percentage of that test group (10 eggs) affected 
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2.3.2. Larvae 

For all three species, DPH (but not RPC) was significantly associated with larval mortality up to 
24 hours post experimentation (Table 5). That is, larval mortality was more dependent on the age of 
larvae used in the experiments, rather than any effect arising from exposure to varying levels of 
decompression. The highest mortality was found in golden perch and silver perch at 12 and 10 DPH, 
respectively (Figure 10). For 5, 12 and 18 DPH golden perch larvae, the average rates of mortality 
were 7.7, 16.3 and 0%, respectively. Murray cod mortality averaged 5% (22 DPH) and 1.7% for 
(25 DPH), while silver perch had average mortalities of 7 50 and 0% for 4, 10 and 22 DPH, 
respectively. 
 
 
Figure 10. The percentage of larval Murray cod, silver perch and golden perch dead within 24 hours of 
simulated infrastructure passage at different ages (days post hatch, DPH) and across a range of ratio of pressure 
changes (RPC). Each point represents the percentage of that test group (10 larvae) affected 
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Table 5. Results from logistic regression modelling of the relationship between larval mortality (%) and ratio of pressure change (RPC, exposure/acclimation) and larval age in 
days post hatch (DPH) for golden perch, Murray cod and silver perch. 
 

    Golden perch   Murray cod   Silver perch 

Model Effect χ2 DF a P value   χ2 DF P value   χ2 DF P value 

RPC + DPH + (DPH × RPC) Main 47.2 5 <.0001  8.4 3 0.0385  394.1 5 <.0001 
 DPH 11.5 2 0.0032  6.2 1 0.0128  55.1 2 <.0001 

 RPC 0.1 1 0.7395  0.2 1 0.6809  0.7 1 0.4001 
 DPH × RPC 3.4 2 0.1785  3.7 1 0.056  1.7 2 0.432 
                          

 
a DF = degrees of freedom
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Unlike mortality, the likelihood that larvae sustained an injury (but were not dead 24 hours post 
exposure) was significantly related to RPC in golden perch and silver perch (but not Murray cod). In 
these cases, the likelihood of injury increased as RPC (E/A) fell (Figure 11), but the relationship was 
not linear and a threshold response was observed. For silver perch, thresholds of 3.7 and 3.8 RPC were 
estimated for 10 and 22 DPH larvae, respectively (Table 6). For golden perch, thresholds of 0.47 and 
0.56 RPC were estimated for 12 and 18 DPH larvae, respectively (Table 6). Many of these threshold 
estimates were associated with large 95% confidence intervals, and for some models (e.g. 10 DPH 
silver perch), variability in the likelihood of injury at RPCs below the estimated threshold led to a 
poor fit of the piecewise model (indicated by R2<0.5 in Table 6). 
 
Having a deflated swim bladder explained a large amount of the injury responses in larvae 
(Figure 12). For 10 DPH silver perch, 12 DPH golden perch and 25 DPH Murray cod, swim bladder 
deflation began below a RPC threshold of ~0.4. Deflation may occur at slightly higher RPC (~0.6) in 
22 DPH Murray cod, but large confidence intervals indicate that there is a large amount of uncertainty 
regarding this estimate (Figure 12 and Table 6). The presence of internal emphysema (Figure 14) at 
lower RPCs also contributed to an increase in the likelihood of injury for all species. However, no 
significant threshold could be identified for this response (Figure 13 and Table 6). In 18 DPH golden 
perch, internal haemorrhaging was observed, with blood pooling in the cavity posterior to the swim 
bladder (Figure 15). Haemorrhaging increased significantly as RPC fell below an estimated threshold 
of 0.39 (piecewise regression, F=16.5, df=3,26, p<0.0001; R2= 0.66) (Figure 16).  
 
 
Figure 11. The percentage of larval Murray cod (top), silver perch (middle) and golden perch (bottom) injured 
at two different ages (days post hatch, DPH) following simulated infrastructure passage over a range of ratio of 
pressure changes (RPC). Piecewise regression lines are shown if there was convergence in the piecewise linear 
regression model and the relationship were statistically significant. The grey line shows the band between the 
95% confidence intervals of the breakpoint outlined in Table 6. 
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Table 6. Estimates of ratio of pressure change (RPC) threshold for barotrauma injuries in larval Murray cod, 
silver perch and golden perch following simulated infrastructure passage. F-values and probability are for 
piecewise regression model fit, and R2 is proportion of variation in response explained by the piecewise model. 
Results are not shown where the model was not able to be fitted or was not significant for that response 

Species Response variable 

Days 
post 
hatch 

F-Value 
Prob > 

F R2 

RPC 
df = 
3,26 Threshold 

       
Murray cod Total injured (%) 22 – – – – 
  25 – – – – 
       
 Deflated swim bladder (%) 22 3.66 0.0252 0.29701 0.63 
  25 3.82 0.0216 0.30494 0.42 
       
 Internal emphysema (%) 22 – – – – 
  25 – – – – 
       
Golden perch Total injured (%) 12 9.51 0.0002 0.523088 0.47 
  18 10.44 0.0001 0.546429 0.56 
       
 Deflated swim bladder (%) 12 5.62 0.0042 0.393265 0.39 
  18 – – – – 
       
 Internal emphysema (%) 12 – – – – 
  18 – – – – 
       
Silver perch Total injured (%) 10 3.05 0.0472 0.267773 0.37 
  22 36.61 <.0001 0.808562 0.38 
       
 Deflated swim bladder (%) 10 3.09 0.0451 0.270771 0.37 
  22 1.64 0.2038 0.159259 0.33 
       
 Internal emphysema (%) 10 – – – – 
  22 – – – – 
              

Note: 
Only injury responses where the model was able to converge for at least one of the species are shown. 
Dashes indicate where the model did not converge. i.e. the relationship did not have a breakpoint. 
R2 values indicate how well the piecewise model fit the data; those with R2 < 0.5 typically display a poor fit of the breakpoint 
(reflected on the injury plots as a wide 95% confidence band). 
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Figure 12. The percentage of larval Murray cod (top), silver perch (middle) and golden perch (bottom) with a 
deflated swim bladder at two different ages (days post hatch, DPH) following simulated infrastructure passage 
over a range of ratio of pressure changes (RPC). Piecewise regression lines are shown if there was convergence 
in the piecewise linear regression model and the relationship were statistically significant. The grey line shows 
the band between the 95% confidence intervals of the breakpoint outlined in Table 6 
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Figure 13. The percentage of larval Murray cod (top), silver perch (middle) and golden perch (bottom) with 
internal emphysema at two different ages (days post hatch, DPH) following simulated infrastructure passage 
over a range of ratio of pressure changes (RPC). Piecewise regression lines are not shown, because there was no 
convergence of models. 
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Figure 14. Internal emphysema observed in a 22-days post hatch Murray cod larvae. In this instance (as with 
most) emphysema was observed posterior to the intact swim bladder 

 
 
Figure 15. Pooling of blood on the posterior end of the swim bladder was observed in 18- days post hatch 
golden perch larvae when exposed at lower ratios of pressure changes 
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Figure 16. The percentage of 18-days post hatch larval golden perch with internal haemorrhaging following 
simulated infrastructure passage over a range of ratio of pressure changes (RPC). A piecewise regression line is 
given, with the grey horizontal line showing the band between the 95% confidence intervals of the estimated 
breakpoint 

 
 

 
 
 

2.3.3. Juveniles 

The percentage of juvenile silver perch and Murray cod that were dead or disorientated within 
five minutes of simulated infrastructure passage never exceeded 30% (Figure 11). For silver perch, 
this probability increased as the exposure pressure fell below 42% of the acclimation pressure (RPC 
breakpoint 0.42: Table 7), but the confidence band of the breakpoint was wide (Figure 11), a 
consequence of the poor fit of the model (R2 = 0.21: Table 7). Although there was no significant fit of 
the piecewise model to the Murray cod data (p > 0.05), there was a small increase in the incidence of 
death or disorientation at RPC < 0.35 (Figure 11). 
 
Murray cod and silver perch were not injured when held in the chambers but not decompressed 
(RPC=1). For most of the injury types, the incidence increased as RPC (E/A) was reduced 
(Appendix 2: Figure 59). For some injury types, the modelled maximum probability of injury was 80–
100% at the lowest RPCs (Figure 17). For Murray cod, these injuries included swim bladder rupture, 
exophthalmia, haemorrhage of the viscera and mouth, and emphysema of the eye and fins. In this 
species, other injuries occurred to a maximum modelled probability of ~40% at the lowest RPCs, 
including haemorrhage of the kidney and heart, and emphysema of the viscera, heart, operculum and 
pharyngo-clitheral (PC) membrane. The modelled maximum probability of liver haemorrhage was 
~60%. 
 
Silver perch typically had lower maximum modelled probabilities of injury than Murray cod. Viscera 
haemorrhage and swim bladder rupture were the only injuries that approach 80–100% mortality at the 
most extreme RPCs tested (Figure 17). For all other injury types, the modelled maximum injury 
encountered rarely exceeded 40%, and for many it rarely exceeded 20% (including exophthalmia, 
haemorrhage of the eye, mouth and heart, and emphysema of the eye, fin operculum and viscera).  
 
For thirteen different injury types, a breakpoint or threshold RPC could be estimated in at least one of 
the species using piecewise regression (Figure 17 and Table 7). At RPCs below the threshold, there 
was a substantial increase in the probability of injury. The 95% confidence interval (Figure 17) and 
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goodness-of-fit values (Table 7) indicate that breakpoint estimates were more reliable in determining a 
threshold response for some injuries than for others. 
 
 
Figure 17. The percentage of juvenile Murray cod (top) and silver perch (bottom) that were dead or 
disorientated within 5 minutes of simulated infrastructure passage over a range of ratio of pressure changes 
(exposure/acclimation pressure). Piecewise regression lines are shown only if there was convergence in the 
piecewise linear regression model and the relationship were statistically significant. The grey line shows the 
band between the 95% confidence intervals of the breakpoint outlined in Table 7 
 
 

 
 
 
The RPC thresholds for Murray cod were generally well-defined, with narrow confidence limits 
(Figure 18 and Figure 19), and the piecewise linear models fit the data well for most injuries (i.e. 
R2>0.5; Table 7). A threshold range occurred between RPC 0.2 and 0.4, and once RPC had fallen to 
2.0, a majority of the injury thresholds had been reached, including swim bladder rupture, 
haemorrhage of the liver and heart, and emphysema of the viscera and PC membrane (Figure 19). The 
most well-defined threshold with narrow confidence intervals occurred between RPC 0.1 and 0.2. At 
this RPC range, there was a substantial increase in the probability of exophthalmia; haemorrhage of 
the eye, mouth and kidney; and emphysema of the fins, eye and operculum. Although a threshold of 
RPC 0.63 was predicted to occur for viscera haemorrhage (Table 7), the confidence intervals of this 
estimate were wide (Figure 19), suggesting it was not a reliable threshold estimate.  
 
For silver perch, thresholds were less consistent than they were for Murray cod and the confidence 
limits were much wider (Figure 18 and Figure 19). Threshold estimates ranged between RPC 0.3 and 
0.7, and were identified with respect to haemorrhage of the eye, viscera, liver and kidney, as well as 
emphysema of the PC membrane. In the case of swim bladder rupture, there was a gradual linear 
response over the entire range of RPC tested and a threshold could not be identified (Figure 18). As 
for Murray cod, although a significant piecewise model could be fitted for viscera haemorrhage, the 
wide confidence limits suggest that the threshold estimate for this injury was unreliable (Figure 19).  
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Table 7. Estimates of ratio of pressure change (RPC) threshold for barotrauma injuries in juvenile Murray cod and silver perch following simulated infrastructure passage. F-values 
and probability are for piecewise regression model fit, and R2 is the proportion of variation in response explained by the piecewise model. Empty cells indicate that the model was 
not able to be fitted or was not significant for that response 
 

Injury response 

Murray cod 

  

Silver perch 
F-value 

Prob > F R2 
RPC F-value 

Prob > F R2 
RPC 

df = 3,35 threshold df = 3,42 threshold 

Dead or disorientated – – – – 3.8 0.0174 0.21 0.42 
Fin emphysema 123.8 <.0001 0.91 0.11 2.0 ns 0.13  
Exophthalmia 25.9 <.0001 0.69 0.15 – – – – 
Eye haemorrhage 13.5 <.0001 0.54 0.17 5.5 0.0028 0.28 0.39 
Eye emphysema 62.6 <.0001 0.84 0.13 – – – – 
Pharyngo-clitheral membrane emphysema 15.6 <.0001 0.57 0.33 13.9 <.0001 0.5 0.33 
Operculum emphysema 6.4 0.0014 0.36 0.13 1.3 ns 0.08  
Mouth haemorrhage 26 <.0001 0.69 0.15 – – – – 
Viscera haemorrhage 18.5 <.0001 0.61 0.63 24.8 <.0001 0.64 0.32 
Viscera emphysema 9.6 <.0001 0.45 0.39 – – – – 
Heart haemorrhage 12.9 <.0001 0.53 0.3 – – – – 
Liver haemorrhage 19.6 <.0001 0.63 0.26 7.3 0.0005 0.34 0.49 
Swim bladder rupture 38.4 <.0001 0.77 0.24 – – – – 
Kidney haemorrhage 8.8 0.0002 0.43 0.12 9.3 <.0001 0.4 0.68 
         
Note: 
Only injury responses where the model was able to converge for at least one of the species are shown. 
Dashes are where the model did not converge. i.e. the relationship did not have a breakpoint. 

Those marked with 'ns' converged but were not statistically significant (0.05). 

R2 values indicate how well the piecewise model fit the data, those with R2 < 0.5 typically display a poor fit of the breakpoint (reflected on the injury plots as a wide 95% confidence band). 
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Figure 18. a)–m), plots showing the percentage of juvenile Murray cod (top) and silver perch (bottom) that 
displayed various barotrauma injuries following simulated infrastructure passage over a range of ratio of 
pressure changes (Exposure/acclimation pressure). Trend lines are given if there was convergence in the 
piecewise linear regression model. The horizontal grey line shows the 95% confidence intervals of the 
breakpoint. Only injuries where the model converged for at least one of the species are shown. Estimated 
breakpoints and regression model tests are given in Table 7.  
 
a) Fin emphysema 
 

 
 
 
 

c) Eye haemorrhage 
 

 
 

 
 

b) Exophthalmia 
 

 
 
 
 

d) Eye emphysema 
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(Figure 18 continued) 
 
 
e) Pharyngo-clitheral membrane 
emphysema 

 

 
 
 
 
 
 
 
 

g) Mouth haemorrhage 
 

 
 
 
 

 
 

 
f) Operculum emphysema 
 

 

 
 
 
 
 
 
 
 

h) Viscera haemorrhage 
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(Figure 18 continued) 
 

 
i) Viscera emphysema 

 

 
 

k) Liver haemorrhage 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

j) Heart haemorrhage 
 

 
 

l) Swim bladder rupture 
 

 
 
 
 
 
 
 

 
 
 
 



 NSW DPI  49 

Downstream fish passage criteria for the MDB  Boys et al. 

(Figure 18 continued) 
 

 
 
 

 
 
 

m) Kidney haemorrhage 
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Figure 19. Summary of estimated ratio of pressure changes (RPC, E/A) thresholds (± 95% confidence intervals) 
where piecewise models could be fitted to the data. Injury types are presented bottom to top, in the order at 
which they were first estimated to occur (those with thresholds at less severe or lower RPCs to those at more 
severe RPCs)  
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Label codes: Kidney haemorrhage (K_H), liver haemorrhage (L_H), eye haemorrhage (E_H), pharyngo-clitheral membrane 
emphysema (PC_E), viscera haemorrhage (V_H), viscera emphysema (V_E), heart haemorrhage (H_H), swim bladder 
rupture (SB_R), exophthalmia (EX), mouth haemorrhage (M_H), eye emphysema (E_EM), operculum emphysema (OP_E) 
and fin emphysema (F_E). 
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2.4 Discussion 

Murray cod, golden perch and silver perch were exposed to rapid decompression at the egg (golden 
perch and silver perch), larval (Murray cod, golden perch and silver perch) and juvenile (Murray cod 
and silver perch) stage. These correspond to the life stages at which the species are likely to be 
exposed to passage through river infrastructure during downstream migration. For eggs and larvae, the 
most extreme RPC tested was ~0.1; that is, exposure pressures that are ~10% of acclimation pressure. 
Juvenile fish were tested over a slightly larger range of RPCs, up to ~0.05, or exposure pressures that 
are ~5% of acclimation pressure. 
 
The range of RPCs tested here reflects the vast majority of pressure scenarios that these life stages 
may be exposed to at river infrastructure. The release of autonomous hydraulic sensors (Sensor Fish: 
Deng et al. 2007) has revealed that fish may be exposed to slight sub-atmospheric pressures (~95 kPa) 
during downstream passage through ‘undershot’ irrigation weirs (Boys et al. 2013). Given this, a fish 
migrating at surface, 5 m or 10 m depth would be exposed to a RPC of 0.9 (95÷101 kPa), 0.6 
(95÷152 kPa) or 0.5 (95÷201 kPa), respectively. Sensor Fish measurements taken at Kaplan and more 
advanced hydropower turbines have shown that while nadirs as low as 7 kPa could be experienced by 
fish, mean nadirs of ~87 kPa are more typical, with the level varying with discharge (Deng et al. 
2010). Assuming the 87 kPa scenario, a fish migrating at surface, 5 m or 10 m depth would be 
exposed to RPCs of 0.9, 0.6 or 0.4, respectively. If experiencing the more extreme nadir of 7 kPa, fish 
migrating at surface, 5 m or 10 m depth would be exposed to RPCs of 0.07, 0.05 or 0.03, respectively.  

2.4.1. Eggs and larvae 

Egg and larvae seldom experienced mortality after being subjected to rapid decompression across the 
range of RPC tested. The vast majority of golden perch and silver perch eggs hatched successfully 
within 24 hours of being exposed to simulated infrastructure passage. Murray cod eggs were not 
tested; unlike silver perch and golden perch, Murray cod lay sticky eggs that adhere to a substrate and 
would not pass weirs, dams or hydropower plants like the pelagic, drifting eggs of the other two 
species. 
 
While the lack of mortality may seem unexpected given the fragility of eggs and larvae, it is consistent 
with several laboratory studies that have exposed egg and larvae to sub-atmospheric pressures 
(reviewed in Cada 1990). Beck et al. (1975) exposed egg and larval striped bass (Morone saxatilis) to 
sub-atmospheric pressures (44 and 14 kPa) with little resultant mortality. Similarly, common carp 
larvae (Cyprinus carpio) exposed to 53 kPa suffered no mortality (Ginn et al. 1978). Bluegills 
(Lepomis macrochirus), largemouth bass (Micropterus salmoides) and channel catfish (Ictalurus 
punctatus) are other species that have displayed low or no mortality when exposed to hydraulic 
stresses, including decompression to pressures as low as ~50 kPa (Kedl and Coutant 1976, Cada et al. 
1981). 
 
Although larval mortality was rarely observed in this study, there was evidence of pressure-induced 
effects. Internal injury rates were typically higher as RPCs fell; that is, the rate of injury increased as 
the exposure pressure fell to a smaller proportion of the acclimation pressure. In many cases, this 
relationship was not linear and for silver and golden perch a threshold response was observed. For 
silver perch, the rate of injury substantially increased as the exposure pressure fell below ~40% of the 
acclimation pressure (RPC ~0.4). For golden perch, this threshold occurred at exposure pressures of 
~50% of the acclimation pressure. 
 
The primary observation driving the increase in injury was whether a fish had a deflated swim 
bladder. Jones (1951) showed that slow decompression to 40% or less of the acclimation pressure can 
cause swim bladder rupture in euthanased redfin perch (Perca fluviatilis). This has subsequently been 
applied as a rule of thumb by others when defining decompression thresholds for the protection of fish 
at hydropower turbines (e.g. Cada 1990). Brown et al. (2012a) exposed juvenile Chinook salmon to 
rapid decompression more characteristic of turbine passage, and noted that rupture occurred once 
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exposure pressures fell below 50% of acclimation pressures. Our observed thresholds for swim 
bladder deflation in silver perch, golden perch and Murray cod larvae were all around an RPC of 0.4, 
which seems to support the findings of these studies. 
 
In this experiment, we considered a deflated swim bladder as a potential sign of swim bladder rupture, 
because the fish were too small to identify actual rupture points. The most extreme RPC tested in this 
study would have resulted in a larvae’s swim bladder expanding to ~9.5 times its original size: a 
magnitude that has been shown to cause significantly high rates of rupture in other species (e.g. 
Chinook salmon: Brown et al. 2012a). However, it is unclear whether the swim bladder deflation we 
observed in larvae was due to rupture via an alternative mechanism, such as the venting of gas through 
the gut (referred to hereafter as burping). While the species examined here were physoclistous and 
have ‘closed’ swim bladders as juveniles and adults (preventing burping), it is possible that a 
rudimentary connection may still exist between the swim bladder and gut at the larval stage. This 
connection at an early life stage allows for initial swim bladder inflation by gulping air at the surface, 
a behaviour that has been documented in the larvae of many physoclistous species, including 
percichthyids (Hadley et al. 1987, Chapman et al. 1988, Battaglene and Talbot 1990, Battaglene et al. 
1994).  
 
Burping of gas could be beneficial for larval survival, because it may prevent swim bladder rupture 
and barotrauma injury. There are multiple lines of evidence for burping in the larvae we studied. First, 
deflated swim bladders seldom led to mortality within 24 hours of exposure, and there was little 
evidence from this study to suggest that these injuries will be of any consequence to the long-term 
survival of the fish. Second, swim bladder rupture has also been associated with the presence of 
internal emphysema in other studies (Brown et al. 2012b), because bubbles of gas released from the 
swim bladder become trapped in the viscera or embedded in surrounding tissue. Although we 
observed some cases of internal emphysema in larvae at lower RPCs, this observation was often 
independent of a fish having a deflated swim bladder (Figure 14). Without having any evidence of an 
association between a deflated swim bladder and the presence of internal emphysema, we must 
conclude that there is a substantial possibility that the deflation of the swim bladder resulted from 
burping, rather than swim bladder rupture. 
 
The question then remains that if internal emphysema were not caused by swim bladder rupture, then 
what was the cause of this in some of the larvae we decompressed? Others have noted that 
emphysema can result either from free gas being displaced from elsewhere, or having come out of 
solution (Brown et al. 2012b). The latter is most likely in the larvae we studied, since the swim 
bladder was the only source of free gas in these larval fish. Although the data suggests emphysema 
was more likely to be observed at lower RPCs, no threshold response was evident, and emphysema 
was also observed in a small number of fish that had not been subjected to decompression (RPC=1). 
In 12 DPH golden perch, 50% of one of test group of fish not decompressed displayed signs of 
internal emphysema (Figure 13). This raises further doubt about whether the internal emphysema 
observed in this study can be considered barotrauma related.  
 
We found some evidence that susceptibility to injury may vary between species and age classes. For 
example, internal haemorrhaging was only observed in 18-DPH golden perch. Larvae undergo rapid 
anatomical and physiological development. Therefore, vasculature and organs may be more 
vulnerable to barotrauma at some developmental stages than at others. In larval white sturgeon 
(Acipenser transmontanus), barotrauma susceptibility may be higher at the time of first exogenous 
feeding than at other times (Brown et al. 2013). As with swim bladder deflation, the critical threshold 
in larvae that were affected appears to be when exposure pressure falls below 40% of acclimation 
pressure.  
 
In this study, 24 hours post exposure was treated as the end point. Research into the longer-term 
survival of eggs and larvae following rapid decompression may be warranted. In particular, it is 
unclear whether injuries that appear non-lethal at the 24-hour point (e.g. haemorrhage and swim 
bladder deflation) have longer-term implications on survival. While burping may reduce the 
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susceptibility of larval fish to swim bladder rupture, larvae that fail to initially fill their swim bladder 
can suffer reduced growth, skeletal deformities and increased susceptibility to stress-induced mortality 
in aquaculture conditions (Spectorova 1976, Al-Abdul-Elah et al. 1983, Weppe and Bonami 1983). 
Early-stage larvae that are forced to burp during decompression may never regain the capacity to refill 
the swim bladder and develop as normal. With respect to eggs, there is evidence that prolonged 
increases in pressure shortly after fertilisation can lead to triploid progeny that are incapable of 
reproducing (Chourrout 1984, Goudie et al. 1995). While this is a very different profile of pressure 
change when compared to the decompression experienced by fish at river infrastructure, it highlights 
the vulnerable nature of fish to pressure effects at this early ontogenetic stage. To date, no one has 
attempted to keep fish hatched from eggs that have been exposed to rapid decompression for long 
enough to evaluate potential impacts on future reproduction. 
 

2.4.2. Juveniles 

While few juvenile Murray cod or silver perch were dead or disorientated immediately following 
simulated infrastructure passage, autopsies determined that there was a high frequency of barotrauma 
injury. This supports the findings of Brown et al. (2012a), who highlighted the importance of using 
both internal and external observations to assess the impacts of hydropower turbine passage, since fish 
suffering from barotrauma may not die immediately. The clinical signs of barotrauma most commonly 
observed were swim bladder rupture; exophthalmia; haemorrhage of the viscera, heart, liver, kidney, 
mouth and eye; and emphysema of the fin, eye, viscera, PC membrane and operculum. The longer-
term impacts of these injuries on survival are poorly understood for these species. However, liver, 
kidney and viscera haemorrhage, swim bladder rupture, exophthalmia, and emphysema of the fins 
have been linked with mortality in juvenile Chinook salmon (McKinstry et al. 2007). 
 
In most cases, there was a significant negative relationship between the percentage of fish injured and 
RPC (E/A). At the lowest (most extreme) RPCs tested, the percentage of fish affected ranged between 
40 and 100%, depending on the type of injury. The relationship was typically non-linear, and discrete 
thresholds could be seen in most cases. For many of the injuries, we found that the breakpoint 
generated by the piecewise regression approach allowed us to objectively define a threshold in RPC 
that once exceeded, resulted in a significant increase in the probability of injury. There tended to be 
more uncertainty around the threshold estimates for silver perch, when compared to Murray cod. In 
silver perch, some injuries began when exposure pressure fell below 70% of the acclimation pressure, 
while others were not seen until exposure pressures fell below 30% of the acclimation pressure. 
Thresholds were more distinct in Murray cod. Generally, Murray cod required greater levels of 
decompression before clinical signs of barotrauma were observed. However, once thresholds were 
exceeded, the incidence of injury increased substantially more in Murray cod than in silver perch. For 
Murray cod, the vast majority of injuries were noted once exposure pressure fell below 40% of 
acclimation pressure, and by 20%, half of the clinical signs of barotrauma we had noted had occurred. 
By the time RPC had fallen below 10–20% of acclimation pressure, the remaining barotrauma injuries 
had begun occurring. 
 
The difference between Murray cod and silver perch in the probability of some injury types may be 
explained by anatomical or physiological differences. For example, exophthalmia was regularly 
observed in Murray cod once exposure pressure fell below 15% of acclimation pressure, but rarely 
observed in silver perch. Reports of susceptibility to barotrauma-induced exophthalmia vary greatly in 
the literature, even within the same genus. For example, exophthalmia was frequently reported in 
angled golden perch (Macquaria ambigua) (Hall et al. 2013), but not in Australian bass 
(M. novemaculeata) brought to surface from similar depths (Roach et al. 2011). For all species 
predisposed to exophthalmia, the incidence always increases as RPC (E/A) decreases, whether this be  
angled fish surfacing rapidly from greater depths (Rummer and Bennett 2005, Hannah et al. 2008a), 
or migratory fish being exposed to sub-atmospheric pressures (Brown et al. 2012b). 
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The head shape of Murray cod is substantially different from that of silver perch; this may make the 
cod more predisposed to exophthalmia. The eyes of Murray cod protrude from a ventrally compressed 
head, whereas the eyes of silver perch protrude to a lesser extent, within a laterally compressed head 
(Figure 38). To our knowledge, the role of head shape and eye placement in mediating susceptibility 
to exophthalmia has not been investigated. However, fish with a large choroid body that secretes 
oxygen to the eye (similar to the rete mirabile in the swim bladder, Wittenberg and Wittenberg 1974) 
seem more susceptible to exophthalmia (Stephens et al. 2001). This has not been linked directly with 
decompression injuries, but rather with spontaneous exophthalmia under aquaculture conditions, 
which relates to the release of oxygen into the orbital cavity during stress-induced blood acidosis 
(Herbert et al. 2002, Wells and Dunphy 2009). Others have attributed exophthalmia during rapid 
decompression to the release of gas from the swim bladder during rupture (Brown et al. 2012b). The 
location of rupture on the swim bladder may determine the likelihood of exophthalmia. Rupture points 
on the anterior-dorsal region of the bladder are more often associated with gas travelling to the orbital 
cavity (Hannah et al. 2008b). In comparison, in species less susceptible to exophthalmia, air released 
from the swim bladder often travels caudally, and may be more associated with abdominal bloating 
and cloacal prolapse (Rummer and Bennett 2005, Rogers et al. 2008). 
 
Rupturing of the swim bladder occurred in both Murray cod and silver perch, although its relationship 
with RPC differed substantially between species. In silver perch, the relationship was fairly linear. The 
first observations of rupture occurred once exposure pressure fell below 80% of acclimation pressure, 
and became progressively more frequent as RPC fell. Although no distinct threshold was determined 
using the piece-wise model, only two fish out of 60 displayed a ruptured swim bladder if exposure 
pressure was kept above 60% of acclimation pressure. Decompression beyond that level led to a 
steady increase in the probability of rupture, until close to 100% of fish had sustained ruptured swim 
bladders at exposure pressures that were 10% of the acclimation pressure. In comparison, juvenile 
Murray cod appear to have a much higher threshold for swim bladder rupture, which did not occur 
until fish were exposed to pressures lower than ~25% of acclimation pressure. Like silver perch, 100% 
rupture rates were evident in Murray cod once exposure pressure was close to 10% of the acclimation 
pressure.  
 
The obvious cause of swim bladder rupture is the expansion of gas inside it during decompression, 
causing it to overinflate and burst. The degree of gas expansion for a given level of decompression can 
determined using Boyle’s law. This law states that P1V1=P2V2 (where P1 and V1 are the initial 
acclimation pressure and volume and P2 and V2 are the exposure or final pressure and volume). Put 
simply, for every halving of pressure, gas volume will expand to twice its original volume. Therefore, 
while silver perch sustained ruptures from only minor pressure-induced increases in swim bladder 
volume (1.25 times), Murray cod appear to have more robust bladders, which can expand four times in 
volume before rupture occurs. Physoclistous species with closed swim bladders are often suggested to 
be more susceptible to rupture than physostomes, which have the ability to vent or burp gas during 
rapid decompression (Cada 1990, Becker et al. 2003, Brown et al. 2012a). This assertion is not 
supported by our result, when they are viewed within the context of other studies. For example, larger 
falls in pressure were required to rupture the bladders of Murray cod (a physoclist) than Chinook 
salmon (a physostome in which rupture occurs when pressure is halved; Stephenson et al. 2010). 
Therefore, when predicting the swim bladder’s vulnerability to rupture, the morphology or strength of 
the swim bladder may be equally or even more important than whether the fish is physoclistous or 
physostomous. At the very least, it appears that generalisations about thresholds for swim bladder 
rupture should be treated with some degree of caution, as mentioned earlier with respect to the use of 
Jones’ (1951) findings by Cada (1990). 
  
Although the long-term effects of swim bladder rupture on fish survival were not investigated in this 
study, it has been linked to eventual mortality in some species: for example, Chinook salmon 
(McKinstry et al. 2007) and redfin perch (Perca fluviatilis; Harden Jones 1951). Mortality may not 
occur directly from the rupture itself, because swim bladder healing following rupture has been 
reported for several species. These include Atlantic cod (Gadus morhua L.; Midling et al. 2012), 
rainbow trout (Oncorhynchus mykiss; Bellgraph et al. 2008) and Pacific cod (G. macrocephalus 
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Tilesius; Nicho and Chilton 2006). Instead, displaced gas may cause associated damage of other 
organs, or lead to sub-lethal impacts that can subsequently cause death: e.g. loss of buoyancy 
regulation once gas becomes trapped in the body cavity, leading to exhaustion or predation (Brown et 
al. 2012b). The long-term effects of the injuries observed in this study on the survival of Australian 
species should be further investigated, along with any sub-lethal effects on vulnerability to predation, 
feeding, growth and reproduction. 
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3. FLUID SHEAR 

3.1 Introduction 

Water velocity plays an important role in mediating the transfer of food, nutrients and organisms 
through rivers, as well as creating a diversity of habitats (Gordon et al. 1992). Fish tend to be well-
adapted to the range of water velocities (Vogel 1994), and use these during both downstream and 
upstream migrations (McLaughlin and Noakes 1998). However, fish are generally more tolerant of 
flow in a uniform direction. If the water velocity changes abruptly, shear stress and turbulence can 
cause injury and disorientation (Cada et al. 1999). 
 
Shear stress occurs when two masses of water with different velocities and/or direction intersect. This 
causes friction at the interface of the two masses (Davies 1988). When a fish is exposed to this 
intersection at a scale comparable to its body length, it is exposed to frictional forces on its body. 
Fluid shear occurs naturally in river systems, particularly through riffle and rapid habitat. But, it can 
be substantially elevated as water passes near or through river infrastructure, such as weirs, regulators, 
dam spillways and hydropower facilities (Cada 2001, Baumgartner et al. 2006).  

Once shear stress becomes elevated to a level that cannot be tolerated by fish, injury and mortality can 
result (Cada 2001). Studies simulating the shear environment generated in hydropower turbines have 
documented an increase in the mechanical injury of fish, with typical injuries including torn opercula, 
dislocated eyes, haemorrhaging, scale loss and behavioural stress (Neitzel et al. 2004, Deng et al. 
2005). Most studies have focused on North American species and the impact on juvenile (Neitzel et 
al. 2004, Deng et al. 2005) or larval (Cada et al. 1981, Cada 1990, Killgore et al. 2001) fish at shear 
levels comparable to those produced by hydropower turbines. The data collected has been used to 
provide guidance on thresholds for fish injury and mortality, which can inform more ‘fish-friendly’ 
turbine design (Cada 2001). 
 
Comparatively little is known about the role of shear as a mechanism for fish injury at infrastructure in 
areas outside North America, and at instream structures other than hydropower turbines. In Australia, 
there is concern that significant numbers of fish are being injured or killed when passing downstream 
through irrigation weirs (Baumgartner et al. 2006, Baumgartner et al. 2013). Computational fluid 
dynamics modelling suggests that elevated shear levels can occur in areas where water is discharged 
under a gate (i.e., an undershot weir; Baumgartner et al. 2013). While this may contribute to fish 
injury during weir passage, the theory remains to be tested. So too does the importance of shear stress 
as a mechanism for injury relative to other hydraulic stresses, such as barotrauma resulting from rapid 
decompression. It is important to determine the potential for shear-induced injury at existing instream 
structures, as well as to predict the potential risk of injury faced by migrating fish, as new facilities are 
proposed and considered for construction. Within New South Wales (NSW), this is currently the case 
for mini-hydropower at a number of river sites (Baumgartner et al. 2012). 
 
In this chapter, we report on experiments in which various Murray–Darling Basin (MDB) fish species 
(Murray cod, silver perch and golden perch) and life stages (egg, larvae and juvenile) were subjected 
to shear stresses of varying magnitudes in a flume. Using this approach, we were able to model the 
relationship between increasing shear stress and injury and mortality.  

3.2 Methods 

3.2.1. Shear flume 

A cylindrical plexiglass flume (1.95 m long and 0.44 m diameter) was connected to a submerged jet at 
one end, and to a fibreglass reservoir tank (2.10 m long x 2.10 m wide x 0.9 m) at the other end 
(Figure 20). An electric pump (Grundfos® NBG 125), capable of pumping water at 153 m3 h-1, 
circulated water through the flume via a 15-cm diameter PVC pipe. On entry to the flume, a conical 
plastic nozzle reduced the diameter of flow from 15 cm to 5 cm over a distance of 26 cm (Figure 21), 
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effectively accelerating the flow and creating a submerged jet into the flume. This approach has been 
used by others to reduce the non-uniformity of velocities inside the flume, and generate a quantifiable 
shear environment where water from the flume becomes entrained in the jet stream (Neitzel et al. 
2000).  
 
Maximum velocities of 18.3 m s-1 were possible in the centre of the nozzle. A valve was used to 
reduce this velocity and subsequently alter the shear environment. An inline flow meter (Wollman 
Silver Turbo Water Meter, ARAD Waterworks®) was used to set the jet at various flow rates, which 
were pre-determined as generating particular levels of shear strain at the interface of the jet and the 
surrounding water (Figure 21). A clear polycarbonate deployment tube fixed above the submerged jet 
at an angle of ~30° was used to introduce eggs, larvae and juveniles to the point in the flume where 
the strain rate was known. The end of the deployment tube was located 30 mm above the centreline of 
the jet (Figure 21). 

3.2.2. Characterisation of the shear environment 

The level of shear that experimental fish were exposed to was quantified using an approach similar to 
that adopted in previous studies (e.g. Neitzel et al. 2004). Using a pitot tube attached to a calibrated 
pressure gauge, velocity measurements were taken along a radial axis. The axis started 90 mm in front 
of the nozzle and radiated out from the jet’s centreline at 5 cm increments, encompassing the point 
where fish were first exposed to the jet (Figure 21). Although fluid shear can occur downstream of this 
point, strain rates have been quantified at multiple points downstream (Neitzel et al. 2004), and these 
will never be as high or constant as the strain rates at the zone of flow establishment closest to the jet 
nozzle. It is also impossible to determine an exact and consistent path of fish downstream in the flume, 
and therefore impossible to quantify a standardised measure of shear for the fish’s entire time in the 
flume. As a result, when we refer to strain rates in this study, we are referring to the maximum strain 
rate that a fish was exposed to within the zone of flow establishment (as per Neitzel et al. 2004). We 
are not referring to a measure of the complete, complex and stochastic shear environment that a fish 
was exposed to during its entire time in the flume.  
 
Flow velocities (m s-1) were calculated by converting the velocity head (m) measured with the pitot 
tube and using a Bernoulli’s equation, where H is the total head (m), υ  is the velocity (m s-1) and g 
the gravitational constant (m2 s-1):  

g
H

2

2υ
=     Eq. 4 

 
 
Velocity measurements at the exit of the jet were taken for a variety of flow rates generated by the 
flume pump (5, 10, 15, 20, 25, 30, 35 and 37 L s-1) (Boys et al. 2013). These generated mean jet 
velocities (measured 90 mm in front of the nozzle) of 3.9, 7.78, 14.71, 18.97, 24.82, 28.92, 32.36, 
33.81 and 34.5 m s-1, respectively. Shear strain (τ) was calculated for each of these flows based on the 
radial velocities measured with the pitot tube. Shear strain rate (cm s-1cm-1) can be described as the 
change of water velocity (µ ) produced over distance (y), as shown in Equation 5:  
 

yδ
µδτ


=    Eq. 5 

 
The distance across which changes of velocities are measured has an important influence on the 
calculation of shear strain. During our study, the distance used to calculate shear strain was 5 mm 
(Δy=yf – yi). This is of higher resolution than that used by Neitzel et al. (2004), who calculated strain 
using a Δy = 18 mm. We used a finer scale measurement in this study, because we were interested in 
testing smaller fish, including eggs of ~ 2mm diameter and larvae ranging from ~9–20 mm in length. 
The resultant strain rates that fish were tested at in this study were 18.20, 148.35, 446.22, 629.49, 
880.80, 1056.90, 1204.94, 1267.02 and 1296.87 cm s-1cm-1 (Table 8). 
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Figure 20. Overview of the shear flume, showing the main components 
 

 



 NSW DPI  59 

Downstream fish passage criteria for the MDB  Boys et al. 

 
Figure 21. Schematic of the flow establishment zone of the flume, showing the nozzle (A), the deployment tube 
(B), the edge of the jet and fish exposure point (C) and location of the flow establishment zone (D) 
 

 
 
 
 
 
 
 
 
 
 
 
Table 8. Velocities of the jet stream in front of the nozzle and the calculated shear strain rate for a given flow 
generated by the pump through the flume 

 

Flow through flume (L s-1) 
 

Velocity of jet 
(m s-1) 

 

Strain rate 
(cm s-1 cm-1) 

 
 

3.90 
 

3.13 18.20 
7.78 4.00 148.35 

14.71 5.56 446.22 
18.97 6.52 629.49 
24.82 7.83 880.80 
28.92 8.75 1056.90 
32.36 9.53 1204.94 
33.81 9.85 1267.02 
34.50 10.01 1296.87 
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3.2.3. Fish production and handling 

Eggs and larvae 
Larval Murray cod, golden and silver perch and eggs of golden perch and silver perch were bred, 
harvested and housed at the Narrandera Fisheries Centre (NFC) in accordance with the methods 
outlined in Section 2.2.1. Murray cod eggs were collected from earthen ponds. Once hatched, the 
larvae were kept in aerated trays until needed for the experiments (every second day between 9 and 
29 days post hatch, DPH). Golden perch larvae of 12, 18 and 26 DPH and silver perch larvae of 13, 19 
and 27 DPH were collected from rearing ponds using a dip and/or pull net. The larvae were collected 
24 to 48 hours before experimentation and kept in aerated trays until required.  
 
Juveniles 
Juvenile Murray cod, silver perch and golden perch (~2 months old) from a MDB genetic strain were 
bred at NFC. Juveniles were collected from earthen rearing ponds within 2–3 weeks following 
juvenile metamorphosis using a dip net, and held in aerated holding trays supplied with flow-through, 
bore-drawn water (~10 L min-1) for 24–48 hours prior to experimentation. At the time of 
experimentation, the average weight and length of Murray cod were 42 mm (± 3 SE) and 0.8 g (± 0.2); 
golden perch were 39±3 mm and 0.7±0.2 g; and silver perch were 29±3 mm and 0.5±0.2 g. 

3.2.4. Egg experiments 

Healthy golden perch and silver perch eggs were pipetted from an aerated bucket into a small plastic 
jar of bore-drawn water (15 eggs per test group) and transferred via the deployment tube into the shear 
flume. A gentle flow of water down the deployment tube ensured all eggs were flushed into the flume 
where they were exposed to a shear event. After exposure, the eggs were retrieved from the collection 
reservoir using a larval net (Figure 22). Any eggs retrieved were placed into an aerated jar and kept for 
24 hours so that delayed mortality could be quantified.  
 
Four test groups of 15 eggs each (for each species) were exposed to one of nine shear strain rates: 
18.20, 148.35, 446.22, 629.49, 880.80, 1056.90, 1204.94, 1267.02 or 1296.87 cm s-1 cm-1. Sixty 
additional eggs of each species not put through the flume were kept in aerated jars (20 eggs each) to 
be used as hatching controls. Handling effects were further quantified by introducing four test groups 
at a strain rate of 0 cm s-1 cm-1 into the flume via the deployment tube while the pump was not 
running. 
 
Figure 22. Net used to recapture the fish and eggs after being exposed to shear strain environments  
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3.2.5. Larval experiments 

Ten larvae were pipetted from the holding tray into a small jar of bore-drawn water and transferred via 
the deployment tube into the shear flume. A gentle flow of water down the deployment tube ensured 
all larvae were flushed into the flume, where they were exposed to a shear event. The orientation of 
fish entering the flume (i.e. head or tail first) was not controlled for. After exposure, larvae were 
collected downstream of the flume as per the methods outlined for the egg experiments. All larvae 
were kept for up to 24 hours in aerated jars so that delayed mortality could be quantified. 
 
Murray cod, golden and silver perch larvae were exposed to one of nine strain rates (18.20, 148.35, 
446.22, 629.49, 880.80, 1056.90, 1204.94, 1267.02 or 1296.87 cm s-1 cm-1) at various ages (DPH: 
Table 9). Each strain rate treatment (along with a handling control of 0 cm s-1 cm-1) was conducted on 
three replicate test groups. 
 
 
Table 9. Summary of experimental design showing the age (days post hatch: DPH) of larvae tested and the 
mean maximum and minimum lengths of fish across the three test groups, with 10 replicates for each age group  
 

Species Age of larvae 
(DPH) 

Mean length 
(mm)±SD 

Min. length 
(mm) 

Max. length 
(mm) 

Murray 9 9.48±0.10 9.01 9.89 
cod 11 9.62±0.08 9.22 9.97 
 13 9.85±0.06 9.60 10.28 
 15 9.91±0.09 9.35 10.38 
 17 10.02±0.06 9.70 10.34 
 19 9.86±0.07 9.33 10.24 
 21 10.03±0.09 9.47 10.58 
 23 9.97±0.10 9.51 10.62 
 25 9.92±0.08 9.60 10.30 
 27 9.95±0.08 9.48 10.34 
 29 9.97±0.12 9.55 10.51 
     
Golden  12 9.88±2.84 9.18 10.26 
perch 18 11.44±0.76 9.90 13.79 
 26 16.12±1.48 13.44 19.95 
     
Silver  13 8.71±0.59 7.67 10.60 
perch 19 13.74±0.6 12.45 15.20 
 27 18.41±0.93 16.96 21.32 

 

3.2.6. Juvenile experiments 

Juvenile Murray cod, golden perch and silver perch were dip-netted from holding trays and transferred 
via the deployment tube into the shear flume. A gentle flow of water down the deployment tube 
ensured all fish were flushed into the flume, where they were exposed to a shear event. Although the 
orientation of fish entering the flume was not controlled for, fish typically orientated themselves into 
the flow and therefore entered the flume tail first. Each test group was exposed to one of five strain 
rates (18.20, 446.22, 880.80, 1204.94 or 1296.87 cm s-1 cm-1). For each species, each strain rate 
treatment (along with a handling control of 0 cm s-1 cm-1) was conducted on six replicate test groups of 
five fish. After exposure, all fish were collected downstream of the flume as per the methods outlined 
for the egg and larval experiments. All fish were kept for up to 24 hours in aerated jars to enable 
delayed mortality to be determined. 
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At the time of the experiments, the mean length for Murray cod juveniles was 42.3 mm (± 3.1 SD and 
ranging from 36–49 mm) and mean weight of 0.77 g (± 0.17 SD and ranging from 0.4–1.2 g). The 
mean length for golden perch was 39 mm (± 3.4 SD and ranging from 30–50 mm) and mean  weight 
of 0.74 g (±0.23 SD and ranging from 0.2–1.6 g). The mean length of silver perch was 28.5 mm (± 3.2 
SD and ranging from 23–38 mm) and mean weight of 0.50 g (± 0.16 SD and ranging from 0.2–1.0 g). 

3.2.7. Characterisation of injuries  

Eggs were determined to be mortally damaged if either torn into small pieces prior to being recovered 
from the net (mortality at 0 hours), or if they were recovered whole but had sustained sufficient 
damage to result in a failure to hatch into larvae (mortality at 24 hours). Examination of eggs under a 
microscope (Leica M165FC, Leica Microsystems Pty Ltd®) helped to identify mortally damaged 
eggs. 
 
Numbers of dead larvae or juveniles in each test group were counted immediately following exposure 
and again at 24 hours, with the sum of these two counts to calculate mortality rate. During each count, 
any external injuries were also noted, to determine which injury types were most prevalent following 
exposure to fluid shear. After 24 hours, all larval and juvenile fish still alive were euthanased in a 
solution of 100 mg L-1 ethyl-p-amino benzoate (benzocaine).  
 

3.2.8. Statistical methods and modelling  

The total number of mortalities (0 + 24 hours) was expressed as a percentage and analysed using 
logistic regression to model the effects of shear strain rate on mortality. For the larval experiments, 
developmental stage (DPH) was included in the models as a covariate to test for differences in 
mortality rates between stages. To allow simple comparisons between developmental stages, separate 
models were also applied at each stage, and the actual and predicted mortalities were presented 
graphically. 
 
Threshold strain rates were calculated for each larval developmental stage for each species using 
Equation 6: 

(1) ( )
( )xbb

i

i eP
P *10

1
+=−    Eq. 6 

 
where Pi is the threshold mortality rate, x is the strain rate, and b0 and b1 are coefficients in the logistic 
model. We calculated the lethal shear that would kill 10% and 75% more fish than the handling 
control (strain rate of zero) within 24 hours of exposure (referred to as LS10 and LS75).  
 

3.3 Results 

3.3.1. Eggs 

Egg mortality (0 + 24 hours) significantly increased as strain rate increased, both for silver perch (χ2 = 
333.1, df =1, p <0.0001) and golden perch (χ2 = 123.3, df =1, p <0.005) (Table 10). Each increase in 
unit of strain rate (1 cm s-1 cm-1) led to a 0.8% increase in the mortality rate of silver perch eggs, and a 
7.1% increase in mortality of golden perch eggs (odds ratio: Table 10), until 100% mortality was 
reached. This occurred at strain rates of ≥629.49 cm s-1 cm-1 for silver perch, and ≥148.35 cm s-1 cm-1 
for golden perch (Figure 23). Torn chorion and disrupted cellular protein were noted as the most 
probable cause of egg mortality (Figure 24). 
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Table 10. Logistic regression results for the prediction of mortality in golden perch and silver perch eggs 
exposed to increasing shear strain rates. The strain rates tested ranged from 0 to 1296.87 cm s-1  cm -1  

  

 
Figure 23. Average percentage mortality of eggs exposed to different shear strain rates for: a) golden perch and 
b) silver perch across different strain rates. The line defines the probability calculated by a binary logistic 
regression model  
 

 
 
 
Figure 24. Images of golden perch eggs showing: a) no injury, b) disrupted cellular protein, and c) torn chorion 
 

a) b) c)a) b) c)
 

 

Species χ2 df sig Model Values SE Wald df sig Odds 
ratio 

Golden 
perch 

123.3 1 <0.001 Constant -0.444 0.300 2.192 1 0.139 1.071 
   Shear  0.068 0.022 9.314 1 0.002  

           

Silver 
perch 

333.1 1 <0.001 Constant -1.508 0.233 42.042 1 <0.001 1.008 

   Shear  0.008 0.001 66.554 1 <0.001  
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3.3.2. Larvae 

Following exposure to shear, 92% of Murray cod, 96% of golden perch and 93% of silver perch larvae 
were recovered from the flume for analysis. Larval mortality for all three species significantly 
increased as strain rate was increased, but was not consistent across all DPH (Figure 25; Table 11). 
Typically, younger larvae were more susceptible to mortality when exposed to a shear environment 
than older larvae (Figure 25), and the degree to which increasing strain rate increased mortality 
changed with age (Figure 25). For example, Murray cod larvae were more likely to die across most 
strain rates at 9 DPH than at 19 or 29 DPH (Figure 25). Mortality increased for golden perch as strain 
rate increased for 12 and 18 DPH. However, once larvae were 26 DPH, exposure to a shear 
environment had little effect on survival across the complete range of strains tested (Figure 25) and 
the relationship was not significant (Table 11). Similarly, silver perch showed a strong relationship of 
increasing mortality with increasing strain rate at 13 DPH, but little effect was observed at 19 DPH 
and there was no significant relationship at 27 DPH (Table 11, Figure 25). 
 
Of all the larvae studied, the age class of 9-DPH Murray cod were by far the most susceptible to 
mortality following shear exposure, having an LC10 of only 6 cm s-1 cm-1 and LC75 of 1056 cm s-1 cm-1 
(Table 12). Murray cod larvae became less susceptible once they were 19 DPH, having a LC10 
and LC75 of 894 and 2162 cm s-1 cm-1, respectively, but remained more susceptible than the other two 
species at the oldest age class investigated (Table 12). Silver perch larvae were the next susceptible, 
having an LC10 and LC75 of 100 and 924 cm s-1 cm-1 at 13 DPH, and 1061 and 2159 cm s-1 cm-1 at 
19 DPH, respectively (Table 12). Golden perch susceptibility decreased with age ranging from 
an LC10 and LC75 of 728 and 1762 cm s-1 cm-1 at 12 DPH, and 1326 and 1520 cm s-1 cm-1 at 26 DPH, 
respectively (Table 12). 
 
It was not possible to determine the cause of injury for many larvae that died, because they 
discoloured and began to decompose relatively quickly after the time of death. When injury could be 
ascertained (Figure 26), fin damage was by far the most frequently observed external injury following 
exposure to a shear environment (Table 13). Forty-seven per cent of all Murray cod larvae had fin 
damage following exposure to shear, although this figure was as high as 61 and 74% for the youngest 
larvae tested (9 and 11 DPH, respectively). Fin damage was also noted in golden perch (31%) and 
silver perch (41%). The youngest age classes of Murray cod (9-13 DPH) were also susceptible to 
damage to the yolk sac, which was noted in more than a third of fish of this age bracket. 
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Figure 25. Average percentage mortality (immediate and delayed) of Murray coda (top, a–c), golden perch 
(middle, d–f) and silver perch (bottom, g–i) larvae at three different ages (days post hatch (DPH), corresponding 
to columns) after exposure to various level of shear (strain rate). The line defines the probability of mortality 
calculated by the logistic regression model as defined in Table 12. Lines are not drawn on plots that were not 
statistically significant (p>0.05) 
aAlthough Murray cod models were calculated for all ages (9 through to 29 DPH, shown in Appendix 3), for 
brevity only 9, 19 and 29 DPH are shown here as examples. 
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Table 11. Results of the logistic regression showing whether strain rate, days post hatch (DPH), or the interaction of both best explained variation in mortality rates of Murray cod, 
golden perch and silver perch larvae when exposed to a shear environment. The strain rates tested ranged from 0 to 1296.87 cm s-1 cm-1. ‘Model sig.’ tests whether there is a 
significant relationship of mortality with strain or stage, and ‘Effect sig.’ tests which of strain, DPH or their interaction are significant 
 

Species χ2 df Model sig. Effect Co-efficients SE Wald df Effect sig. 
                    
Murray cod 447.2 3 <0.0001 Constant –2.337 0.33    
    Strain 0.00267 0.0003 65.2 1 <0.001 
    DPH –0.00467 0.0165 0. 1 1 0.777 
        Strain x DPH –0.00004 0.00002 7.2 1 0.007 
          
Golden perch 117.6 3 <0.0001 Constant –2.2159 1.0353    
    Strain 0.00288 0.000976 8.7 1 0.003 
    DPH –0.0822 0.0615 1.8 1 0.181 
        Strain x DPH –0.00004 0.000058 0.6 1 0.440 
          
Silver perch 490.3 3 <0.0001 Constant 5.0902 2.757    
    Strain 0.00477 0.00254 3. 1 0.0609 
    DPH –0.5817 0.2039 8.1 1 0.0043 
    Strain x DPH –0.00007 0.000182 0.1 1 0.707 
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Table 12. Results of follow-up logistic regressions for the relationship between strain rate and larval mortality 
rate at different developmental stages (days post hatch: DPH). The strain rates tested ranged from 0 to 
1296.87 cm s-1 cm-1

.
 LC10 is the strain at which mortality was 10% more than the control (zero strain) group 

and LC75 is the strain at which mortality was 75% more than the control.  
 

Species DPH  Effect Model  SE Wald  Sig. 
Odds 
ratio 

 
LC10 LC75 

           
Murray 
Cod 

9 Constant –1.8594 0.396 39.4 0.001     
 Strain 0.0030 0.0004 72.6 0.001 1.003  6 1056 

           
 19 Constant –4.5217 0.726 38.8 0.001     
  Strain 0.0026 0.0006 16.5 0.001 1.003  894 2162 
           
 29 Constant –1.7141 0.2670 41.2 0.001     
  Strain 0.00139 0.0002 23.7 0.001 1.001  251 2501 
                    
Golden  12 Constant –3.759 0.522 51.8 <0.001     
perch  Strain 0.003 0.0005 27.4 <0.001 1.003  728 1762 
           
 18 Constant –2.86 0.376 57.9 <0.001     
  Strain 0.002 0.0004 28.1 <0.001 1.002  625 2177 
           
 26 Constant –24.741 17.463 2.0 0.157     
    Strain 0.017 0.014 1.6 0.212   1326 1520 
                   
Silver 13 Constant –2.596 0.345 56.8 <0.001     
perch  Strain 0.004 0.0004 88.5 <0.001 1.004  100 924 
           
 19 Constant –5.379 1.067 25.433 <0.001     
  Strain 0.003 0.001 8.386 <0.001 1.001  1061 2159 
           
 27 Model could not fit data     
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Figure 26 Examples of injuries sustained by larvaea after exposure to mortal levels of shear stress: a) spinal 
column injuries, b) missing eye, c) yolk sac rupture and d) decapitation 
 

a) b)

c) d)

a) b)

c) d)
 

a Shown here are 9-days post hatch Murray cod subjected to a strain rate of 1204.94 cm s-1 cm-1 
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Table 13. Frequency of different types of injury (n) and the percentage of fish showing that type of injury for a given age class (days post hatch: DPH) for Murray cod, golden perch 
and silver perch larvae after exposure to the complete range of shear treatments 

Species DPH 

Number 
of larvae 
recovered 

Yolk sac Fin damage Eye damage Spinal damage Decapitation 
  

Haemorrhage 
n (%) n (%) n (%) n (%) n (%) n (%) 

               
Murray cod 9 258 39 15 158 61 1 0 3 1 1 0 8 3 
 11 270 54 20 200 74 1 0 1 0 2 1 3 1 
 13 266 37 14 148 56 0 0 4 2 0 0 5 2 
 15 267 15 6 122 46 2 1 1 0 0 0 1 0 
 17 289 6 2 112 39 0 0 2 1 0 0 1 0 
 19 285 0 0 91 32 0 0 2 1 0 0 3 1 
 21 281 0 0 124 44 0 0 0 0 0 0 1 0 
 23 274 0 0 56 20 1 0 0 0 0 0 0 0 
 25 288 0 0 147 51 0 0 0 0 0 0 1 0 
 27 285 2 1 142 50 0 0 0 0 0 0 2 1 
 29 284 0 0 126 44 0 0 1 0 0 0 0 0 
               
  Total 3047 153 5 1426 47 5 0 14 0 3 0 25 1 
               
Golden perch 12 291 0 0 49 17 0 0 1 0 0 0 0 0 
 18 298 0 0 149 50 0 0 6 2 0 0 2 1 
 26 280 0 0 70 25 1 0 0 0 0 0 11 4 
               
  Total 869 0 0 268 31 1 0 7 1 0 0 13 1 
               
Silver perch 13 271 0 0 94 35 1 0 1 0 0 0 0 0 
 19 288 0 0 109 38 0 0 0 0 0 0 9 3 
 27 279 0 0 142 51 0 0 0 0 0 0 7 3 
               
  Total 838 0 0 345 41 1 0 1 0 0 0 16 2 

N.B. Data pooled for all strain rates.  
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3.3.3. Juveniles 

Exposure to the complete range of shears caused no mortality to juvenile Murray cod and golden 
perch (χ2 = 0.12, df = 1. P = 0.7277) (Figure 27). A small amount of mortality was observed in silver 
perch juveniles at strain rates in excess of ~800 cm s-1 cm-1 (χ2 = 7.3, df = 1. P = 0.0068), but not 
exceeding a probability of 20% (Figure 27). The incidence of injury following exposure to shear stress 
was relatively consistent across the three species of juveniles (Table 14). Fin damage was the most 
commonly noted injury, being present in 39% of all juveniles, with scale loss seen in 14% of all 
juveniles. 
 
 
 
Figure 27. Average percentage mortality of juvenile Murray cod, golden perch and silver perch exposed to 
different shear strain. The line defines the probability calculated by logistic regression and is only shown if 
significant at the p<0.05 level 
 

 
 

 
 
 
 
Table 14. Frequency of different types of injury (n) and the percentage of fish showing that type of injury for 
juvenile Murray cod, golden perch and silver perch after exposure to the complete range of shear treatments 
 
 Injury Murray cod   Golden perch   Silver perch   Total 
  n (%)   n (%)   n (%)   n (%) 
Exophthalmia 1 1  0 0  1 1  2 0.4 
Fin damage 101 56  66 37  46 26  213 39 
Disorientated swimming 0 0  22 12  9 5  31 6 
Scale loss 16 9  26 14  34 19  76 14 
Operculum damage 0 0  0 0  0 0  0 0 
Spinal damage 0 0  0 0  0 0  0 0 
Haemorrhage 12 7   4 2   7 4   23 4 
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3.4 Discussion 

Eggs were found to be extremely susceptible to damage and mortality when exposed to a shear stress. 
Once strain rate exceeded ~150 cm s-1 cm-1, 100% mortality of golden perch and >40% mortality of 
silver perch eggs occurred. Larval fish were also susceptible to injury and mortality following shear 
exposure. However, lower values of strain rate were more tolerable than higher levels, and 
susceptibility tended to reduce as larvae aged and approached juvenile metamorphosis. The only 
exception to this was Murray cod, which remained moderately susceptible to high levels of shear 
stress as late as 29 DPH, when they are on the verge of completing juvenile metamorphosis. Once the 
three species had reached a young juvenile stage, they had become quite resistant to shear stress. 
Although fin damage was observed in more than one-third of juveniles studied, there was little 
evidence that shear stress resulted in mortality up to 24 hours post exposure. 
 
The mechanism responsible for mortality in eggs was related to physical damage to the chorion (or 
cell membrane), or when sufficient disruption occurred to cellular contents to disrupt normal hatching. 
Although we attempted to quantify injuries in larvae, it was not possible to determine which injuries 
contributed to mortality, since larvae were typically at an advanced stage of decomposition at the time 
of autopsy. Damage to the yolk sac was frequently observed in Murray cod larvae between the ages of 
9 and 13 DPH. Murray cod undergo direct development (sensu Balon 1984); they have no true larval 
stage and free embryos leave the parental nest and begin to feed while still retaining stores of yolk 
(King 2002). As a result, Murray cod have been observed to be actively drifting at a stage where they 
have a prominent yolk sac (personal communication Zeb Tonkin Arthur Rylah Institute) (Figure 28). 
This will likely make them vulnerable to shear-induced injury. An interesting anomaly is that the 
vulnerability of Murray cod to yolk sac damage when exposed to shear stress is contrary to what has 
been reported for striped bass (Morone saxatilis) (O'Connor and Poje 1979). This may simply be due 
to experimental differences in jet velocity. In the striped bass study, larvae were exposed to a jet 
velocity of 3 m s-1, which is comparable to the lowest jet velocity that larvae were exposed to in our 
study. 
 
Figure 28. Nine-day post hatch Murray cod, showing the large yolk sac that was vulnerable to damage when 
exposed to shear stress 
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To determine an injury threshold for larval fish, an arbitrary level of mortality of 10% of the 
population (above the level noted in handling controls) was used (LS10), as per previous studies 
(Neitzel et al. 2004, Deng et al. 2005). LS10 was very low (6 cm s-1 cm-1) for 9-DPH Murray cod, 
likely due to the yolk sac’s susceptibility to damage as previously discussed. LS10 was also relatively 
low (100 cm s-1 cm-1) for the youngest age class of silver perch larvae and the oldest age class of 
Murray cod larvae studied (251 cm s-1 cm-1). Beside these three age classes, all other thresholds 
for LS10 ranged from ~600–1000 cm s-1 cm-1.  
 
Other investigators have reported variable outcomes for larval fish when exposed to shear stress. High 
mortality has been reported in larval carp (Cyprinus carpio), but low mortality has been reported in 
species such as bluegill (Lepomis macrochirus), channel catfish (Ictalurus punctatus), large-mouth 
bass (Micropterus salmoides) and mosquitofish (Gambusia affinis) (Cada et al. 1981). In a review of 
laboratory studies that quantified the effects of shear stress on larval fish, Cada (1990) concluded that 
the weight of evidence suggests that early-life-stage fish are not susceptible to shear-induced 
mortality. In his paper, the author speculated that this may be due to the small size of larvae leading to 
smaller velocity differentials, and therefore smaller shear forces. Our findings demonstrate that such 
generalisations should be treated with caution. Although some larvae were not vulnerable to mortality 
at certain ages, at other ages they were highly susceptible. Essentially, the outcomes of any study may 
be driven by the age at which the larvae are tested. The findings reported in Cada (1990) are also from 
a very limited range of shear stress, and do not account for changes in mortality over a wide range of 
shear values as reported in our study.  
 
It is difficult to directly compare the strain rate thresholds estimated during our study and values 
reported for other species in other studies. This is because other investigators either generate shear in a 
different way to our study (e.g. through pipes rather than with a submerged jet; e.g. O'Connor and 
Poje 1979), or express shear stress in a different way, such as flow velocity rather than strain rate (e.g. 
O'Connor and Poje 1979, Cada et al. 1981). Other studies use strain rate, but calculate it at a scale 
most relevant to the species under investigation (e.g. Neitzel et al. 2004, Deng et al. 2005). Where 
approximate comparisons can be made to studies that also used a submerged jet, the threshold values 
for damaging shear we estimated for most age classes of larvae (~600–1000 cm s-1 cm-1) were close to 
the ranges reported by others. For example, Neitzel et al. (2004) reported LC10 values for major injury 
and mortality of juvenile American shad (Alosa sapidissima) of ~600 cm s-1 cm-1 and from ~900–
1000 cm s-1 cm-1 for juvenile Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout 
(O. mykiss). Similarly, Deng et al. (2005) estimated an LC10 for mortality in juvenile Chinook salmon 
of approximately 900 cm s-1 cm-1, and cites a comparable injury threshold determined by 
Turnpenny et al. (1992) of ~800 cm s-1 cm-1. 
 
Unlike these previous studies, we found juveniles to be resistant to damage when exposed to the 
complete range of shear stress tested. Although more than one-third of juvenile fish sustained fin 
damage, significant injury was rarely observed. By comparison, studies such as Neitzal et al. (2004) 
and Deng et al. (2005) frequently noted head and operculum damage. This is likely to be due to the 
differing orientation with which the fish were exposed to the shear environment. In our study, the 
juvenile fish were not restricted in their orientation and typically orientated themselves into the flow 
coming down the deployment tube, entering the jet stream tail first. If fish are forced to enter a shear 
environment head first, injury is greater and the force of flow coming from behind the fish can lift 
scales, tear open operculum, dislodge eyes and damage gills (Neitzel et al. 2004, Deng et al. 2005). 
The importance of orientation is illustrated nicely by Neitzel et al. (2004), who found that mortality of 
Chinook salmon was reduced from 100% to 10% if the fish was exposed tail first to strain rates of 
~1000 cm s-1 cm-1, rather than head first. The implication of this for our study is that we may not have 
gained a full appreciation for the impact of fluid shear on juveniles of the species studied. Future 
research where fish are exposed to a shear stress in a head-first manner may be warranted. 
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4. CONCLUSIONS AND RECOMMENDATIONS  

Previous research has shown that Murray–Darling Basin (MDB) fish species may be susceptible to 
injury and mortality as they pass downstream through river infrastructure (Baumgartner et al. 2006, 
Baumgartner et al. 2013). Until now, the mechanism responsible for this was poorly understood. This 
has made it difficult to properly evaluate the sustainability of river infrastructure developments and 
reduce any impact on fish passage through sound engineering and operation (Baumgartner et al. 2012, 
Thorncraft et al. 2013).  
 
This report has detailed laboratory assessments of the likelihood of varying levels of decompression 
and fluid shear contributing to the injury and mortality of various MDB fish species at different life 
history stages. Our ultimate goal was to determine critical thresholds for injury and mortality, and 
develop criteria to protect downstream migrating fish at river infrastructure (Table 15).  

4.1 Recommended thresholds for decompression  

For eggs and larvae, there was little evidence that simulated infrastructure passage led to barotrauma 
resulting in immediate mortality (within 24 hours). We did, however, observe evidence of non-lethal 
(at the 24-hour point) injuries or pressure effects in larvae. The percentage of fish affected by these 
increased as the ratio of pressure change (RPC) fell, but the relationship was rarely linear; typically, a 
threshold response was evident. Injuries usually occurred once exposure pressures fell below 40% of 
the acclimation pressure. Much of this injury involved the deflation of swim bladder, although in one 
species and age class, internal haemorrhaging was observed. While internal emphysema was observed 
at low-range RPCs, the source of this gas is unclear, because it does not appear related to swim 
bladder rupture.  
 
It is possible that the swim bladder deflated as a result of venting or burping of gas through the gut 
during decompression, rather than rupture. Swim bladder deflation did not result in immediate 
mortality. However, it is still unclear whether burping reduces the susceptibility of larvae to 
barotrauma, or whether larvae lack the ability to refill the bladder at this young age, and as a result 
suffer longer-term effects on development, growth or survival.  
 
Based on the results of this study, there is little evidence of susceptibility of eggs and larvae to 
barotrauma-induced mortality. Therefore, there appears to be little need at this stage for guidelines 
around the magnitude of decompression for the protection of these early life stages in the MDB. 
However, swim bladder deflation and haemorrhage can occur once exposure pressures fall below 40% 
of the acclimation pressure. Caution may need to be exercised beyond this level of decompression 
until the consequence of these conditions on long-term survival of larvae is established.  
 
For juvenile fish, autopsy revealed that although many of them did not die immediately (within 
5 minutes) following decompression, a large proportion displayed clinical signs of barotrauma. 
Symptoms included ruptured swim bladder, internal and external haemorrhaging, emphysema of 
internal and external organs, and exophthalmia. Other studies indicate that many of these injuries can 
lead to eventual death. Until the longer-term implications of these injuries on survival are known, the 
recommended guidelines for juveniles are based on thresholds that are likely to minimise injury.  
 
Critical thresholds for juvenile injury varied both between injury types and between the two species 
studied, making generalisations difficult. Thresholds ranged from modest levels of decompression, 
where exposure pressures fell below 70% of acclimation pressure, to more severe scenarios, where 
pressure fell below 10% of acclimation pressure. When making recommendations, a precautionary 
approach was used. As a guide, exposure pressures above 60% of acclimation pressure should protect 
physoclistous fish such as the species studied here. This guideline is conservative, and is based on the 
desire to guard against swim bladder rupture and kidney haemorrhage in juvenile silver perch. This is 
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comparable to estimates and guidelines produced for other physoclistous species (e.g. 60% for 
bluegill, Lepomis macrochirus) (Becker et al. 2003). Further research that determines the extent that 
different injuries contribute to eventual mortality (see Section 4.4) may enable the 60% guideline to be 
changed to the less conservative recommendation of 40%.  
 
 
Table 15. Generalised downstream fish passage criteria for Murray–Darling Basin species relating to levels of 
decompression and fluid shear required to minimise injury and mortality of fish  
 
Life stage Decompression Fluid shear 
 
Egg 

 
No threshold recommended 

 
Should not exceed 150 cm s-1 cm-1 

 
Larvae 
 
 

 
No threshold recommended, but 
caution should be exercised once 
exposure pressures fall below 40%a  

 
Should not exceed ~10 cm s-1cm-1 in 
areas and times of suspected larval 
Murray cod larval drift. 
Otherwise should not exceed 
~620 cm s-1 cm-1 

 
Juvenile 

 
 

 
Exposure pressures should not fall 
below 60% of the acclimation 
pressure 

 
No threshold recommended 

a Based on evidence of some pressure effects where long-term impacts on survival are uncertain. 
 

4.2 Recommended thresholds for fluid shear 

Our results suggest that downstream drifting eggs are highly susceptible to damage when exposed to 
shear stress, and would therefore be likely to suffer high levels of mortality at river infrastructure. The 
threshold for mortality differed between the two species studied. Silver perch eggs could survive 
higher levels of shear (<629.49 cm s-1 cm-1) than golden perch (<148.35 cm s-1 cm-1). Nevertheless, 
based on the protection of the more vulnerable species, we recommend that shear not exceed 
150 cm s-1 cm-1. In this study, 100% mortality of golden perch and >40% mortality of silver perch 
eggs occurred when this threshold was exceeded. 
 
Strain rates that exceeded the threshold mortality of 10% of the population (above handling control 
levels) were used to set the recommended criteria for larval fish. The majority of age classes and 
species of larvae will be adequately protected if shear does not exceed ~620 cm s-1 cm-1. The only 
instance where we would recommend a more conservative guideline is if the protection of 9–13-days 
post hatch (DPH) Murray cod is desirable. In this case, alternative measures to reduce injury should be 
explored if shear exceeds ~10 cm s-1 cm-1. Since there was little evidence of significant injury or 
mortality of juveniles of any of the species over the range of shear tested, no thresholds are 
recommended for the protection of this life history stage. Further research may be warranted to 
establish whether we have underestimated the effect on juveniles, due to the tail-first orientation in 
which they were exposed to the submerged jet. 

4.3 Implications for fisheries managers and infrastructure engineers 

Identifying the mechanisms responsible for fish passage risks will help fisheries managers and 
infrastructure engineers determine the appropriateness of infrastructure works, and structural and 
operational conditions, to reduce these risks. The fish passage criteria presented in Table 15 and 
summarised in this chapter are general in nature, and are an attempt to synthesise results that often 
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varied across multiple species and injury types. Managers and engineers should not apply these 
criteria without careful consideration of the results and discussion contained within the previous 
chapters. In many cases, the criteria are based on a precautionary principle, where it is assumed that 
by protecting the species most susceptible to injury and mortality, a large range of species in an 
assemblage will also be protected. However, such a precautionary approach may not be desirable in all 
instances. At times, managers may deem it more appropriate to focus on the protection of one 
particular threatened species or age class. 
 
The criteria generally relate to thresholds that once exceeded, lead to injury and mortality. In some 
instances, it may be ecologically reasonable to accept a higher degree of mortality and injury than is 
reflected by these criteria. For example, it may be demonstrated that alterations to an existing structure 
are likely to result in mortality that would be equal to (or even less than) that currently experienced (a 
‘no net loss’ approach).  
 
We acknowledge that in some cases, the design of a structure may not be able to be modified 
sufficiently to meet the suggested guidelines without compromising its operational efficiency. In the 
instance of 9-DPH Murray cod, a shear guideline of 10 cm s-1 cm-1 is extremely low, and it may not be 
possible to design river infrastructure to meet these levels. Initially, it may be worth considering 
whether a higher level of mortality of 9-DPH larval may be acceptable. For example, accepting 75% 
mortality would allow shear levels of up to ~1000 cm s-1 cm-1. But, such decisions are difficult to 
make without understanding the critical level of mortality for larvae at different ages before 
recruitment to the population becomes compromised. If accepting a higher level of mortality is not 
desirable, managers and engineers may want to consider additional measures, such as intake screens to 
prevent entrainment of fish (Figure 29). An alternative approach would be to consider operational 
guidelines for structures within the vicinity of known areas of Murray cod spawning. Since Murray 
cod have a very narrow (~6 week) window each year for spawning, it may be possible to restrict the 
operation of hydropower facilities during these times. 
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Figure 29. Downstream fish passage risk assessment and decision support matrix for the assessment of river 
infrastructure projects 
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4.4 Further research needs 

The downstream fish passage criteria outlined here would benefit from additional research to address 
knowledge gaps and clarify any unresolved uncertainty. The following research needs are 
recommended. 
 
Determine mortal injury of barotrauma 
Future research should aim to evaluate the effects of swim bladder deflation, haemorrhage and 
emphysema on longer-term development and survival of larvae. This will require holding larvae for 
longer than 24 hours post decompression, preferably to a point after juvenile metamorphosis. 
Similarly, experiments should establish the long-term survival impact of the multitude of barotrauma 
injuries suffered by juveniles. By establishing a more specific list of mortal injuries, it may be possible 
to recommend less conservative guidelines associated with the decompression of larvae and juveniles.   
 
Investigate sub-lethal impacts of barotrauma 
Experiments are needed to establish whether rapid decompression results in sub-lethal impacts that do 
not cause immediate death, but compromise the long-term sustainability of populations. Areas of 
concern may be effects on fitness and reproductive potential. It may be worth holding decompressed 
eggs and larvae for long enough to establish whether growth, feeding, swim bladder regulation and 
eventual breeding are affected. Another area of concern is whether fish that are ready to spawn lose a 
reproductive season if they are decompressed. The stripping of eggs from ripe females has been 
observed during rapid decompression in pressure chambers (Brett Pflugrath, Pacific Northwest 
National Laboratory, personal observation).  
 
Include additional factors to shear testing 
Further investigation regarding the tolerance of juvenile fish to head-first exposure to shear stress will 
determine if guidelines should be added for the protection of juveniles. Further shear testing could 
also incorporate acceleration as a factor for consideration (e.g. Deng et al. 2005), because this has 
been shown to be a key determinant of injury and mortality. Such testing will better enable laboratory 
results to be related to field measurements, using technology such as Sensor Fish. 
 
Determine the risk of exposure in the wild to critical levels of decompression and shear 
Although this study sheds some light on the tolerable limits of decompression and shear for different 
fish species and life history stages, the results need to be placed within the context of what may be 
encountered in the field. This involves gaining a better understanding of the migratory ecology of 
native fish, and the hydraulic conditions experienced at a greater range of infrastructure types. For 
instance, the true extent of egg and larval drift through weir pools, weir structures and hydropower 
facilities remains undocumented. In relation to determining the range of pressures experienced at 
infrastructure in the field, the release of autonomous hydraulic sensors (Sensor Fish: Deng et al. 2007) 
at ‘undershot’ irrigation weirs has revealed that fish may be exposed to slight sub-atmospheric 
pressures (~95 kPa) during downstream passage (Boys et al. 2013). Similar measurements undertaken 
overseas at Kaplan and more advanced hydropower turbines have shown that while nadirs as low as 
7 kPa could be experienced by fish, mean nadirs of ~87 kPa are more typical, with the level varying 
with discharge (Deng et al. 2010). Many more infrastructure types and flow conditions need to be 
evaluated to provide a more complete understanding of the risk that fish will be exposed to injurious 
levels of decompression. Fluid shear is of particular interest, and has not been properly explored at 
NSW infrastructure in any great detail.  
 
Extend fish passage guidelines to include coastal species 
River infrastrcuture exists in coastal streams, and in some catchments infrastructure owners are 
exploring the use of these existing structures to generate mini-hydropower. It will be beneficial to 
extend research to species found in coastal systems of NSW, which are home to many species that 
have downstream migration from rivers to estuaries as a necessary requirement in their life cycle. 
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Developing downstream fish passage guidelines for coastal streams will benefit owners and operators 
of river infrastructure. It will enable them to prepare for future challenges and risks related to dam and 
weir upgrades, and to inform cost–benefit decisions regarding the use of mini-hydropower at existing 
infrastructure. 
 
Field validation of laboratory-generated models (post-assessment) 
If there is an expectation that new mini-hydropower facilities attempt to meet certain minimal 
hydraulic conditions to safeguard against fish injury and mortality, it will be prudent to evaluate fish 
survival at these facilities. By releasing live fish at structures in parallel to Sensor Fish, laboratory 
models developed in this report can be validated, and operation ranges put forward at the development 
stage can be checked.  
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APPENDIX 1 – BAROTRAUMA INJURY PHOTOGRAPHS 

Some photos have been included for common carp (Cyprinus carpio) and carp gudgeon (Hypseleotris sp.), 
because they illustrate the type of injury well. All fish were exposed to simulated infrastructure passage as per 
the methods outlined in this report. 
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Figure 30. Skin haemorrhage (juvenile silver perch) 

 
 
Figure 31. Skin emphysema (shown here in juvenile carp, Cyprinus carpio, mirror carp variant) 
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Figure 32. Bloodshot cloaca (juvenile silver perch) 

 
 
Figure 33. Prolapsed gut (shown here in carp gudgeon, Hypseleotris spp.) 
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Figure 34. Fin haemorrhage (juvenile silver perch) 

 
 
Figure 35. Fin emphysema (juvenile Murray cod) 
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Figure 36. Pharyngo-clitheral membrane emphysema (juvenile Murray cod with operculum removed) 

 
 
Figure 37. Emphysema of operculum (juvenile silver perch) 
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Figure 38. Exophthalmia in juvenile (a) Murray cod and (b) silver perch 
a) 

 
b) 
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Figure 39. Eye haemorrhage (juvenile silver perch) 

 
 
Figure 40. Eye emphysema (juvenile carp) 
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Figure 41. Gill haemorrhage (juvenile silver perch) 

 
 
Figure 42. Gill emphysema (65-day-old Murray cod) 
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Figure 43. Mouth haemorrhage (juvenile Murray cod) 

 
 
Figure 44. Mouth emphysema (juvenile carp) 
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Figure 45. Viscera haemorrhage (juvenile silver perch) 

 
 
Figure 46. Viscera embolism (juvenile carp) 
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Figure 47. Heart emphysema (juvenile carp) 

 
 
Figure 48. Heart haemorrhage (juvenile silver perch) 
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Figure 49.  Liver haemorrhage (juvenile Murray cod) 

 
 
Figure 50. Liver emphysema (juvenile carp) 
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Figure 51. Kidney haemorrhage and emphysema (juvenile carp) 

 
 
Figure 52. Kidney emphysema (juvenile silver perch) 
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Figure 53. Swim bladder rupture (juvenile silver perch) 
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APPENDIX 2 – COMPLETE COLLECTION OF BAROTRAUMA INJURY 

MODELS
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Figure 54. The complete collection of barotrauma injury plots showing the percentage of Murray cod (top) and silver 
perch (bottom) that displayed certain injuries following simulated infrastructure passage over a range of ratio of pressure 
changes (exposure/acclimation pressure). Lines are shown if there was convergence in the piecewise linear regression 
model and if a significant relationship was found. The grey line shows the band between the 95% confidence intervals of 
the breakpoint 
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APPENDIX 3 – COMPLETE COLLECTION OF MURRAY COD FLUID 

SHEAR MODELS 

Average percentage mortality (immediate and delayed) of Murray cod at all ages (days post hatch DPH) after 
exposure to various level of shear (strain rate). The line defines the probability of mortality calculated by the 
logistic regression model. 
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