

Outline

- Background
- Feedstocks
- Feasibility –Bayswater
- Feasibility Mt Piper
- Conclusions

Bioenergy – climate role

"Bioenergy use is substantial in 1.5°C pathways [...] due to its multiple roles in decarbonizing energy use IPCC, 2018 Special Report on Global Warming of 1.5 °C - Chapter 2

IPCC global primary energy supply of 1.5°C pathways from the scenario

database (combined values for the two key pathways):

Biomass as share of total primary energy: 26.4% Biomass as share of total renewables: 43.4%

NSW - 0% net emissions target by 2050

Biomass for Bioenergy

Use of existing residues and new energy crops for medium / large scale electricity generation in NSW

Objectives

- Testing of energy crops (productivity tonnes/ha)
- Techno-economic assessment potential of biomass for electricity generation (\$/kWh)
- Techno-economic assessment of hybrid solar-biomass concepts (Regional hot spots)
- Contribution to emissions reduction (tCO₂-e/kWh)
- Social perceptions towards bioenergy

The NSW Primary Industries Climate Change Research Strategy

Rationale

- Gradual transition from coal need for cost-effective, reliable, dispatchable power
- Existing coal-fired power stations co-generation with biomass, no new capital investment
- Opportunity to produce pellets locally
- Biomass processing facility near where power is generated unique in the world. Circular economy opportunities; extraction of green chemicals.
- Job creation in the establishment and running of biomass processing plant and related industries

The NSW Primary Industries Climate Change Research Strategy

Approach for techno-economic assessments

- Available feedstock (existing forestry residues)
- Distance to processing facilities
- Collection and transport costs
- Processing (2 options):

Network of pellet factories close to the resource

Centralised biomass processing facility close to the power station

- Biomass handling
- Biomass processing (pelletising or wood flour)
- Electricity output; CO₂ savings; cost of generation

The NSW Primary Industries Climate Change Research Strategy

Feedstocks

ABBA (Australian Biomass for Bioenergy Assessment)

https://nationalmap.gov.au/renewables/

* Biomass availability from all organic sources

North Coast Residues project

https://www.dpi.nsw.gov.au/forestry/northcoast-residues-project

DPI RIRDC Report

Biomass from pine harvest residues

Pellets – white versus torrefied

Table 7: Overview of properties of torrefied pellets in relation to other fuels

	Wood chips	Wood pellets	Torrefied wood pellets	Charcoal	Coal
Moisture content (wt%)	30 – 55	7 – 10	1 – 5	1 – 5	10 – 15
Calorific value (LHV, MJ/kg)	7 – 12	15 – 17	18 – 22	30 – 32	23 – 28
Volatile matter (wt% db)	75 – 84	75 – 84	55 - 80	10 – 12	15 – 30
Fixed carbon (wt% db)	16 – 25	16 – 25	<mark>22 – 35</mark>	85 – 87	50 – 55
Bulk density (kg/l)	0.20 - 0.30	0.55 - 0.65	0.65 - 0.80	0.18 - 0.24	0.80 - 0.85
Vol. energy density (GJ/m ³)	1.4 – 3.6	8 – 11	12 – 19	5.4 - 7.7	18 – 24
Hygroscopic properties	Hydrophilic	Hydrophilic	(Moderately) Hydrophobic	Hydrophobic	Hydrophobic
Biological degradation	Fast	Moderate	Slow	None	None
Milling requirements	Special	Special	Standard	Standard	Standard
Product consistency	Limited	High	High	High	High
Transport cost	High	Medium	Low	Medium	Low

Abbreviations: db = dry basis LVH =Lower Heating Value

sources: ECN (table, fig.1, 3), Pixelio (fig. 2, 5), OFI (fig. 4)

NSW

Department of Primary Industries

Processing – wood flour

- If centralised facility next to the power generation unit – no need for pelletising
- Use of waste heat from power station to dry biomass
- Ability to be upsized if more feedstock available

Power station specs

Both have pulverised coal burners Bayswater: 4x660 MW units; planned closure 2035 Mt Piper: 2x 700 MW units; commissioned in 92/93

Mt. Piper

Bayswater

Siting of biomass processing facility

Scenarios

Bayswater:

Network of pelletising units close to feedstock (NC)

Centralised facility next to the power generation unit (including SE plant)

Mt Piper:

Network of pelletising units close to feedstock (NC) Dried wood flour facility

Feedstock availability

Bayswater

Sawmill residues: 330,000 tonnes Forestry harvest residues: 1.2 Mt

Mt Piper

Pellets from NC: 900,000 tonnes 90,000 ha of radiata pine plantations; no sawmill residues available:200,000 tonnes

Potential – more feedstock

Land use type	Area (ha)	Cover (%)
Marginal-GrazingNative	1,383,166	12.5
Marginal-GrazingPastures	2,112,634	19.2
Marginal-Mining/Quarries	36,513	0.3
Marginal-TransitionLands	192	0.0
Marginal-Other	90,199	0.8
Total area within 200km of Mt Piper	11,021,251	100.0

Feedstock costs

Costs (\$/GMT)	Muswellbrook	Mt Piper	Australia
Stumpage	10	10	Legend Contract Sites
Harvest	25-32	25	Taynetic Tainington Source Source Source Source Jonore Source Jonore Source Jonore Source
Chipping	-	16	100 KM
Haulage	\$12.9/GMT for <50 km to \$		
Sawmill residues	15.6	-	
Sawmill residues	10+0.14/km/GMT	-	
haulage			
Pellet (delivered cost)	190	206-224	
Delivery of pine	-	61.30	
harvest residues			

The NSW Primary Industries Climate Change Research Strategy

-* gratue

Mt Piper feedstock (Portland)

Optimal solution: fuel prep plant next to power station (5% co-firing) Use of waste heat from power station to dry biomass No need to pelletise Capital cost – 63% lower than for pellet facility Ability to be upsized if more feedstock available

What works best?

Scenarios	Strengths	Weaknesses
Decentralised white pellets	De-risking (outages); proven track record; storable in silos	Must be kept dry; need for silos can double capital costs; need for robust dust and fire control systems
Decentralised torrefied pellets	Waterproof fuel – no silos needed, can be stored in coal yard; less power in pulverising mills; minimal dust created	Higher capital investment; only one at commercial scale; biochemical recovery process not demonstrated at scale
Centralised facility	Much lower capital costs per tonne of fuel produced	Though technically viable, not yet built anywhere. Risk of one centralised facility; high number of truck loads required

Bayswater - dashboard

CO₂ saving of 1.41 Mt

1 tonne of pellets = 5 MWh 1 tonne of coal = 7.3 MWh

CO₂ saving of 378,000 t

Bayswater - dashboard

CO₂ saving of 514, 000 t

Department of Primary Industries

Mt Piper - dashboard

Conclusions

- There are no technical hurdles to significant levels of cofiring at both power stations
- Sufficient biomass available for co-firing rates of 40-50% in one of the generation units – lower rates more realistic
- Scope for additional biomass dedicated biomass crops
- Cost of delivered fuel comparable to the cost of fuel delivered to UK, western Europe and Japan
- Additional cost of generated electricity variable

The NSW Primary Industries Climate Change Research Strategy

fabiano.ximenes@dpi.nsw.gov.au

More information at: <u>https://www.dpi.nsw.gov.au/climate-and-</u> emergencies/climate-change-research-strategy/biomass-for-bioenergy

