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General remarks

Sampling for this project has revealed fish communities occurring within wetlands differ
between wetlands and between different habitats sampled within each wetland system.
This finding adds an additional layer of complexity to wetland (and fish) management,
indicating that there will not be a “one size fits all” solution.  Instead, a “precautionary
principle” approach is required until baseline data is collected on the fish fauna of a
particular site.  Unfortunately, degradation of the river system is occurring at a rapid
rate, with mistakes made early on in its management only now beginning to show.  It is
therefore imperative that collection of baseline data on fish populations and their basic
biology occur in order to be able to manage the fish fauna in an appropriate, and
ecologically sensitive manner.

This study has shown that, based on size class data and entry and exit of fish from
wetlands, the wetlands surveyed were not acting as significant recruitment areas for any
fish species analysed.  For some species, wetlands appear to be acting as sinks for the
population, with significantly more individuals recorded moving into wetlands than
were moving out at various seasons.  However due to limitations of the sampling
equipment used, larval fish were not sampled.  As a result it is possible that spawning
may have occurred within wetlands, with larval fish dispersing back into the river at
sizes too small to be sampled.  Lastly, wetlands may act as grow-out (nursery) habitats
with larger size classes of Australian smelt (Retropinna semoni), bony bream (Nematalosa
erebi), callop (Macquaria ambigua), and goldfish (Carassius auratus), exiting wetlands
than entering.  As well as this occurring for some of the native species (including
western carp gudgeon, Hypseleotris klunzingeri; and Lake’s carp gudgeons, Hypseleotris
sp5; crimson spotted rainbowfish, Melanotaenia fluviatilis; and Australian smelt),
significantly more carp (Cyprinus carpio) were recorded entering wetlands than leaving
them in summer, and significantly more gambusia (Gambusia holbrooki) entered
wetlands than left in autumn and spring.

Both of these findings have ramifications for wetland management, particularly for fish
attempting to move out of wetlands and back into the mainstream habitat.  For those
species using the wetland as a grow-out area, management of the inlet structures
should be undertaken to accommodate them and allow for movement of fish back into
the mainstream.  For those native species where wetlands are acting as a sink for their
population, wetland management may need to be changed in order to sustain the
population.  In the case of introduced fish (carp in particular), removal of the population
is a desirable outcome, and wetland management should be continued or changed so
that their removal is enhanced.
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Currently, with the exception of Pilby Creek Lagoon which can be actively drained, all
wetlands sampled during the study are evaporatively dried.  This means that once a
management decision is made to dry the wetland, the inlet structure is closed and no
further connection to the mainstream is possible.  Whilst not a problem to semi-aquatic
fauna that can move readily across land in search of new habitat (eg turtles, yabbies or
water rats), this management action is particularly disadvantageous to the fish fauna
who rely on an open (aquatic) passage to be present to move from the wetland back to
the river.  As water levels drop in the wetland, fish fall prey to predators or declining
water quality and perish.  Hence, wetland management is forcing the wetlands to act as
a population sink.  Where the wetlands are providing grow-out conditions for some fish
species, this could be having the detrimental effect of removing young individuals from
the population before they reach sexual maturity.  

Under natural conditions, fish would also have been stranded in many wetlands as they
dried.  prior to river regulation, during dry periods some remnant wetland fish would
have taken refuge in the river, surviving in the pseudo-wetland habitats created in the
river channel as it reverted to a series of pools.  However, under current river
management, these pseudo-wetland refuge habitats within the river channel no longer
exist during dry periods has been lost.  Further, lateral migration of fish from riverine
refuges and wetlands is now blocked by the presence of flow control structures.

Serious consideration therefore needs to be given to the current method of wetland
management, which improves wetland health, but has a negative effect on wetland fish
populations.  Due thought must be given to ensure that suitable and accessible refuge
habitats exist for wetland fish communities when wetlands are dried.  This may require
a totally artificial process of captive stocks used to reseed wetlands following refilling,
synchronised management of a number of wetlands within an area, or significant
changes to current riverine flow regimes.

Structure type

Of the structures monitored during this study, under current management, downstream
fish passage (into the wetland) was found to be significantly inhibited at Little Duck
Lagoon (short pipe) and Loveday Wetlands (box culvert), although this was only slightly
obstructed for Loveday.  Under current management, downstream fish passage was also
obstructed at Pilby Creek Lagoon (open-top box culvert), although this relationship was
not significant.

When adjustment was made for changes in the direction of flow at some wetlands, it
was shown that Lake Littra (large box culvert) structure facilitated movement of fish into
wetlands that was most approximating unmanaged wetlands.  Little Duck Lagoon, Lake
Merreti (long pipe), and Werta Wert Lagoons (moderate length pipe) were the next
most accommodating for fish passage into wetlands when direction of flow was
considered, with Loveday Wetlands and Pilby Creek Lagoon structures providing the
lowest fish passage efficiency (inhibited at both, although only significantly inhibited at
Loveday Wetlands).

For fish passage out of wetlands (upstream movement) under current management,
only Lake Littra structure and Werta Wert Lagoons structures were found to allow
uninhibited fish passage.  The other structures (in order of least inhibitive to most
inhibitive to movement): Loveday Wetlands, Little Duck Lagoon, Lake Merreti, and Pilby
Creek Lagoon all obstructed fish passage out of wetlands, although this was only
significant for the Lake Merreti and Pilby Creek Lagoon structures.
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When direction of flow at the time of sampling was taken into account, Loveday
Wetlands, Werta Wert Lagoons and Little Duck Lagoon structures were the only
structures to not obstruct fish passage out of wetlands.  All other structures significantly
obstructed fish movement out of wetlands including Lake Littra structure which was not
found to inhibit fish movement under current management conditions.

It is unclear why Lake Littra obstructed fish passage out of the wetland.  Build up of
debris against the fish screens was observed on several occasions, and may have
contributed to the obstructed passage out of the wetland.  Maintenance of this issue
may lead to an improvement in fish movement out of this wetland.

Similarly, it is unclear why Little Duck Lagoon was found to be obstructing fish passage
in both directions under current management.  RFPstructure values improved for
movement both into and out of the wetland when consideration was given to the
direction of flow at the time of sampling, indicating that this may have been a factor.
This structure could be improved through the installation of additional cells in the
embankment, to increase the proportion of the structure relative to the cross-sectional
area of the inlet channel.  This will decrease flow velocities experienced in the culvert
and facilitate fish passage.

Loveday Wetlands structure is also likely to be inhibitive to fish movement into the
wetland as a result of structure management rather than structure design.
Management of this six cell structure in the past has been to allow water exchange to
occur through fully opening one or two cells at one time, rather than opening all cells a
small amount each.  By opening only one or two cells at once, water velocities
experienced through the open cells would be increased, possibly limiting fish
movement (possibly through behavioural avoidance).  It is therefore recommended that
future management of this structure utilise all cells within the culvert rather than only
one or two so that water velocities encountered can be minimised.

Lake Merreti structure is a poor performer for fish movement out of the wetland due to
the long distance fish must swim against laminar flows within the pipe in order to
escape.  The proportion of cross-sectional area of the inlet channel for this structure is
low: by increasing this it is likely that fish passage out of the wetland will improve.

The poor performance of Pilby Creek Lagoon structure for fish movement out of the
wetland is likely to be due to a combination of the structure setting and of the initial
small fish screen size present.  Due to the structure being set quite high in relation to
the bed level of the inlet channel (perched), fish movement out of the wetland is limited
prior to the fish reaching the structure itself as fish must first negotiate a steep rise.  This
rise is not a problem when water levels are equal or near equal either side of the
structure, but becomes a problem when water levels on the wetland side have dropped
below the base of the structure.  Draining of this wetland provides an opportunity for
fish to escape, however, rocks present on the downstream side of the outlet structure
may damage or kill fish as they are flushed out of the wetland.  The fish screens (1cm2

mesh) initially present on Pilby Creek Lagoon inlet structure were too small to allow any
fish greater than approximately 30mm total length (assuming they swam diagonally
through the mesh) to enter or exit the wetland.  The fish screens currently in use are
likely to improve fish transfer through the structure, and fit with the design
recommended by French et al. (1999) for inhibiting carp.  This screen design (5mm
diameter metal rods placed vertically approximately 10mm apart) is still likely to inhibit
movement of a number of species, but allows greater access to most of the smaller fish
species, and those that are greatly laterally compressed (eg bony bream).
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It is recommended that monitoring of fish movement through this structure occur when
water levels have equalised either side of the structure.  This will enable the effectiveness
of these fish screens at passing fish to be determined, eliminating the influence of the
structure being perched when considering movement of fish out of the wetland.

It is also recommended that removal of rock rubble and creation of small pools occur on
the downstream side of the outlet structure in order to lessen damage to fish that are
flushed from the wetland during wetland draining, and erosion from water discharge.

Lastly an open-top box culvert should be installed at another wetland to further
investigate the ability of open-topped structures to allow fish movement into and out of
a wetland.  At Pilby this complicated assessment as the structure was perched, therefore
confounding the assessment of the open-topped structure. 

Structural characteristics

Structural characteristics measured included depth of water within the structure (cm),
flow velocity through the structure (m/s), the height of the invert above the inlet bed
(cm), screen mesh size of fish screens (area in cm2), the width of the apron (cm), the
cross-sectional area of the culvert (cm2), the percentage cross-sectional area of inlet (%)
and openness of the structure.

Of the above characteristics, upstream fish movement (out of a wetland) was most
influenced by apron width, proportion of the cross-sectional area of the inlet, and flow.
A short apron width present and a large cross-sectional area of the culvert were found
to be the most important characteristics for movement of fish out through the
structures surveyed.  It is therefore recommended that these characteristics be
considered during future structure design.  Flow was also found to be an important
factor in passage of fish out of the wetlands surveyed, however fish passage was found
to be greatest when higher flows through the structures were experienced.  This is the
opposite to what would be expected for fish moving against the flow, as it would be
thought that low flows would allow fish to travel further against them when inside the
structure.

For movement of fish into a wetland, flow within the structure was the only factor
found to be significant for the wetlands surveyed, with increasing fish passage occurring
with decreasing flow.  However, flow only accounted for 27.78% of the variation
observed, thus indicating that other factors may be influencing fish movement into the
wetlands.

Dooland et al. (2000) found that in a laboratory flume, carp drifted or actively swam
with the flow when flows were less than 0.4m/sec (Dooland et al. 2000).  Above this
velocity carp were swept through the artificial culvert, employing burst speed repeatedly
to fight against it.  At 0.4m/sec fish would actively avoid being swept or drift into the
culvert.  It is therefore recommended that where possible this filling velocity be
employed to minimise carp colonisation of wetlands (Dooland et al. 2000).

Fish screens

The use of fish screens on managed wetlands needs consideration.  Results from this
study indicate that both the abundance and biomass of carp in managed wetlands with
fish screens were not different to wetlands without fish screens (managed or
unmanaged).  When wetlands were investigated individually, size class analyses showed
that a greater number of small carp (50-200mm) occurred in all wetlands studied
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except Gurra Control Wetland.  However, no significant differences were found between
river and wetland systems for fish 250-300mm, except at Loveday Wetlands where a
greater number of large carp occurred in the wetlands.
These findings indicate that, although carp greater than 300mm are excluded from
wetlands, fish screens are not effective to stop small carp and fish up to 300mm in size
from entering.  As carp can reach 200mm in their first year (Brown 1996), and
management of many wetlands is for it to remain wet for longer than one year,
consideration is needed as to the usefulness of fish screens on wetland inlet structures
when carp of the this size are present in equivalent frequencies whether a fish screen is
present or not. 

Management of fish screens, along with management of the structure itself needs to be
improved.  This study has shown that carp, goldfish and callop are nocturnal or
crepuscular in their activity, indicating that fish screens could potentially be managed on
a daily basis in order to minimise carp movement into wetlands and maximise native
fish thoroughfare.  Although callop were also found to be nocturnal or crepuscular in
their movements, their use of wetlands as adults appears minimal, allowing for fish
screens to be used if deemed necessary to control carp access.

Structure management and maintenance

In addition to structural characteristics, management of the structure is a very important
factor in facilitating fish movement into and out of wetlands.  Regular structure
maintenance is required to ensure structures remain operational in the manner for
which they were constructed.  This includes regular cleaning of debris from the culvert
(especially from fish screens where present) to ensure headlosses are minimized across
the structures and fish passage is not blocked (Northcote 1998).  It also includes
monitoring the effectiveness of the structure itself (eg checking for the presence of leaks
that may attract fish to danger areas) to ensure it is acting correctly.

Correct operation of the structure is also important, and may be as important as the
design of the structures themselves (Dooland et al. 2000).  A structure that has an
approximate cross-sectional area equal to the surrounding inlet channel, but is only
managed to use one or two of the cells present within the structure, will not be
effective at allowing fish movement through the structure.  All cells present should be
employed to facilitate water and fish movement.

It is recommended by Dooland et al. (2000) that filling velocities within the structure
remain at around 0.4m/sec in order to minimise carp influx into wetlands (Dooland et al.
2000).

Where fish screens are present, these should be employed at the times when carp are
most active.  On a daily basis carp are more active at night, dusk and dawn, meaning
that to minimise carp access into wetlands, fish screens should be in place at these times.
On a seasonal basis, carp are known to have a major breeding event in spring (mainly in
October, but extending from August to February), therefore where screens are employed,
they should be in place at this time, and at water temperatures are below 20ºC (when
native fish begin breeding activity) (Mallen-Cooper 1996, Dooland et al. 2000).

Water quality parameters should also be monitored as a part of wetland management.
Increasing water temperature and conductivity were found to be important factors
stimulating fish movement into wetlands.  When native fish were isolated for analysis,
increasing water temperature, conductivity and decreasing flow in wetland inlets were
found to stimulate native fish movement into wetlands.  For introduced fish, increasing
water temperature, conductivity and flow in the inlet channel, with decreasing turbidity
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were found to stimulate movement into wetlands.  These factors only explained 41% or
less of the variation for movement into wetlands, indicating other factors are also
involved, however, changes in these parameters do allow for a prediction of fish activity
which can be used to benefit structure management. 

No water quality or environmental parameters were found to explain movement of the
entire fish community or introduced fish out of wetlands.  When native fish were
analysed alone, however, increasing turbidity and flow at the nearest lock were found to
be significant, although only explained 10% of the variation indicating other factors are
involved.  Therefore turbidity and increasing flow at the nearest lock can be used as
predictors for native fish movement out of wetlands, allowing management of the inlet
structure to occur accordingly.

Use of attractant flows

Preliminary investigations conducted as part of this project indicate that the use of
attractant flows to encourage fish movement out of wetlands prior to undertaking a
drying event may be beneficial.  The validity of this requires further investigation
however, with practicalities needing to be taken into account such as if fish are unable
to move themselves out of a wetland, how they would be removed prior to drying
(manually or mechanically).

Use of deterrents

Dooland et al. (2000) and Champion et al. (2001) undertook laboratory investigations
on carp responses to various deterrents, and indicated that for most either no response
was observed, or habituation to the deterrent occurred quite quickly, limiting their
effectiveness (Dooland et al. 2000, Champion et al. 2001).

Presence of coarse substrate either side of a culvert did not elicit any response in carp
moving through it in the laboratory (Champion et al. 2001).

Although carp were found to prefer a darkened environment, the presence of a strong
light source at the culvert did not completely inhibit movement through the culvert, but
did increase the time taken before fish darted through (Dooland et al. 2000, Champion
et al. 2001).

The use of an acoustic device found that carp were most deterred by frequencies of 10
and 20Hz, with the greatest effect observed at 20Hz.  Results varied between single fish
and groups with and without a leader (single larger fish), less effect was observed in
groups fish without a leader fish (Champion et al. 2001).

In combination, the use of light and sound was not found to increase the effect on fish,
but the remained at the same level (Champion et al. 2001).

As with light and sound deterrents, the use of a bubble curtain did not inhibit carp
movement through the culvert in the laboratory, although increased the amount of
time taken before fish darted through (Champion et al. 2001).  All these deterrents have
limited application in the field as a result of the highly turbid waters present in the
lower River Murray (light) and energy or maintenance requirements (sound, light,
bubble curtain) to run.  

A fifth deterrent investigated, the half barrier, may hold more promise however.  This
sloping chicken wire mesh structure that decreased the water depth available for fish to
move through effectively stopped carp from crossing it throughout the test period.
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Although this experiment was conducted under no flow conditions (flow is essential for
carp to jump: Stuart pers. com. 2003), this barrier warrants further investigation into its
effectiveness and its effects on native species.  As there are no moving parts or energy
requirements, it is potentially very useful for the field with cleaning of debris the only
issue.

Dooland et al. (2000)’s finding that carp actively avoided moving through a laboratory
culvert at flows of 0.4m/sec could also be employed as a management tool to deter or
minimise carp movement into wetlands (Dooland et al. 2000).  
Future investigations

It is recommended that if this study were to be repeated, more unmanaged wetlands
should be included in the survey to overcome inherent differences found between
wetlands.  

It is recommended that further monitoring of the open-top box culvert (Pilby Creek
Lagoon) occur at times when water has equalised either side of the structure to
determine upstream fish passage capacity at these times.  In addition, it is
recommended that an additional open-top box culvert be installed on another wetland
in the region so that fish passage ability can be determined for a pool level wetland that
does not bypass a mainstream weir.  Both these recommendations will remove the
complicating factor of the poor setting present at Pilby Creek Lagoon inlet structure.

Further investigation should be conducted into the effectiveness of carp deterrents
tested (in particular the half barrier) in the field, and the effects of it on native fish
passage (in the laboratory and in the field).  Development of the acoustic and light
deterrent should include development of a low maintenance, inexpensive power source.

The use of attractant flows as a means of minimising fish deaths due to wetland
management should be investigated.  The practicalities of this management option also
needs further investigation, with active removal of fish from the wetland through
netting most likely required to enable fish to move out of a wetland once a drying cycle
has been initiated.
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Background to project

This project was initiated in 2000 to address a major gap in our knowledge of fish
behaviour in a wetland and floodplain environment, and in particular if and how
wetland rehabilitation projects are affecting this behaviour (if at all).

The project examined the requirements / ability / need for all fish captured to move into
and out of wetlands with fish and flow control structures present.  A number of different
structure types were chosen across a range of wetland types to determine which
existing structures had minimal effect on fish movement.

This study resulted in the production of wetland specific recommendations on how to
manage existing fish and flow control structures to benefit the passage of native fish
during lateral migrations between the river and associated floodplain wetlands, and
general recommendations for the construction and installation of fish and flow control
structures at new wetland rehabilitation sites.

It complements, and has worked closely with, a New South Wales Fisheries project
“Development and testing of national guidelines for “fish and flow friendly” causeway,
culvert and wetland inlet structures” that investigated fish movement through road
crossings.  Results from these projects have collaboratively formed the scientific basis for
a major document and a summary document that outlines fish passage requirements
and construction guidelines for waterway crossings (Fairfull, S. and Witheridge, G. (2003).
Why do fish need to cross the road? Fish passage requirements for waterway crossings. NSW
Fisheries, Cronulla, 16pp.).

This project funded two groups of final year Civil and Environmental Engineering
students in 2000 and 2001 to undertake additional laboratory investigations,
complementary to the project’s focus.  Their findings have been incorporated into the
general findings of this report, and journal articles of their work are presented in
Appendix D.

This project was funded by the Natural Heritage Trust MD 2001 Fish Rehab Program
through the Department of Agriculture, Fisheries and Forestry – Australia (AFFA) over
three years.  The staff of the Australian Landscape Trust, Calperum Station, undertook
fieldwork and report preparation on behalf of Bookmark Supporters (Friends of Parks
Inc).  Dr Dean Gilligan of NSW Fisheries developed the sampling strategy, undertook
statistical analysis and preliminary interpretation.
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Objectives

The following objectives were identified for this project in consultation with the NSW
Fisheries project team:

1. Determine the influence of flow rate and flood height on movement of fish between
the river and floodplain wetlands. 

2. Identify the relative importance of channel versus over-bank flows for fish passage
into and out of wetlands.

3. Assess the importance of wetlands for fish recruitment.
4. Determine the impacts of wetland inlet structures on fish passage for native fish.
5. Assist in the development of guidelines to facilitate movement of native fish through

inlet structures while excluding carp.
6. Make recommendations on the design of new structures.

Fish in the Murray-Darling Basin

It is widely acknowledged that the distribution and abundance of native fish in the
Murray-Darling Basin, has declined as a result of a number of impacts (Cadwallader
1978, Walker 1983, Gehrke et al. 1995, Milburn 1995, Harris and Gehrke 1997,
Wahlquist 1997, Sinclair 1999, McNee 2000).

As early as the 1970’s, it was recognised that 11 species of Australian freshwater fish
were seriously threatened or considerably reduced in distribution as a result of dams and
weirs blocking migration paths (Lake 1971). 

All fish species within the Basin are known to undertake some degree of movement
during their life, thus artificial barriers such as levees, culverts, weirs or flow control
structures that obstruct fish movement are likely to make a significant contribution to
this decline (McNee 2000).  Indeed, the Draft Native Fish Management Strategy for the
Murray Darling Basin 2002-2012 considers barriers to be a key threat to native fish
populations in the Murray Darling Basin (MDBC 2002).  In at least one other instance,
these barriers have been implicated in the extinction or decline of fish species (Pierce
1992).

In systems like the Murray-Darling Basin where species have evolved to highly variable
conditions, river regulation continues to have a sizeable impact.  Research findings
suggest that the diversity of fish communities decreases as catchments become more
regulated (Gehrke et al. 1995).  For example, changing the timing, duration, and
frequency of flooding in the Murray-Darling Basin reduces the reproductive success of
native fish by “desynchronizing environmental cycles and the reproductive cycles of
native species” (Gehrke et al. 1995).  The New South Wales Rivers survey found that in
the Murray catchment introduced species, such as carp and redfin perch (Perca
fluviatilis) dominated the catch.  Stable (regulated) river conditions are thought to
disadvantage native species and favour the spread of exotics (Harris and Gehrke 1997).

The stable river levels maintained by the weirs on the River Murray have affected
adjoining wetlands.  Wetlands that fill at what is now the regulated river level have
become permanently inundated rather than fluctuating with the changing levels of the
pre-regulated river. In the Lower Murray, the reduction in frequency and duration of
floods has meant that wetlands situated at higher elevation on the floodplain do not
become inundated as frequently as they would have under natural conditions.  When
flood conditions do occur, the duration of inundation is significantly reduced.

What about the fish? – Improving fish passage through wetland flow control structures in the lower River Murray
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Within the constraints of river regulation, local wetland managers are actively managing
wetlands to reinstate natural flooding regimes and prevent large carp from entering
wetlands.  To achieve this they use flow and fish control structures at the wetland inlets,
with many different structure types being installed as part of approximately 20
established rehabilitation projects, and over 90 more proposed (Goodman pers. com.
2003).

Wetland inlet structures in the Lower Murray vary in size and dimensions, largely as a
result of the absence of guidelines for construction, and an ad hoc approach to design
and management.  To date these structures have been designed and installed based on
available knowledge, materials, and (often most importantly) funds, but with limited
knowledge of their impacts on the passage and recruitment of native fish.  Current
management has raised community concerns about the exclusion of all large fish from
wetlands, with anecdotal information suggesting wetlands are an important part of fish
habitat.  

Wetland inlet structures can present a physical barrier to fish, preventing or limiting
movement of different species and size classes through the structure due to physical
swimming abilities or behavioural preferences (Harris 1985).  Structures may also alter
the local water quality through increasing water velocity, turbulence and noise, or
changing water oxygenation and temperature so that the structure surrounds are
unsuitable to some or all fish (WAEPA 1987, West 1992).  Similarly, unsuitable design or
location of a structure could result in fish being “instinctively reluctant” to enter the
unnatural environment of a culvert

More detailed background information can be found in Appendix A Literature review.

This project aimed to quantify the effect of flow control structures and fish gates on fish
movement, and determine methods to discourage the passage of carp, whilst
promoting the movement of native species.  By monitoring fish movement at different
structures, we aim to make recommendations for optimal design of new structures and
management of existing structures. 

This project addresses several knowledge gaps raised by Humphries et al. (1999), who
identified the need for further research on the following:

• “the use of floodplain habitats, and particularly the flood plain proper during
inundation, by all life-stages of Murray-Darling Basin fishes”;

• “movement of free embryos, larvae, juveniles and adults of small and large Murray-
Darling fish species”;

• “population dynamics of small and large species of Murray-Darling fishes”; and
• “the relative importance of in-channel versus floodplain habitats as nursery areas”

(Humphries et al. 1999).
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Sampling regime

The following methods were adapted to suit local conditions from methodology
recommended by NSW Fisheries.

Net design

In order to sample a range of fish species, fyke nets were considered the most effective
method available.  Fyke nets can be used to sample sites of various water depths (to as
low as 20cm), directional movement within inlet channels and river or anabranch, non-
directional movement in wetlands, and can be easily attached to modified fish screens
at inlet structures in order to directly sample fish fauna at these locations. 

To ensure the nets were capable of catching a representative sample of the fish
community (ie a range of size classes) under a range of flow conditions, a mesh with a
maximum bar length of five to six millimetre (10–12mm stretch mesh) was used.

The nets used in this study (Plate 1) comprised synthetic mesh (bar length of five
millimetre), a flat-bottomed entrance hoop 600mm in diameter, and three internal
funnel traps.  A five metre long leader of the same mesh size was attached centrally and
temporarily fixed (with cable ties) to either the left or right side of the entrance hoop
when sampling for directional movement. 

Fish captured were accessed at the opposite end to the entrance hoop by means of a
drawstring opening (closed during the time that the net was set; termed the “collection
end”).  A polystyrene ball float was placed in the collection end to prevent drowning of
air breathing animals (turtles, water rats and diving birds) that may become trapped in
the net.

Standard sampling

General net set
As shown in Figure 1, a standard sample was carried out over two consecutive days (48
hours).

Nets were set on the first afternoon in the river (or anabranch) and inlet channel on the
river side of the flow control structure.  Where an inlet structure net was present, this
was set to observe fish movement toward the river/anabranch at this time.  Nets were
then left overnight and checked and reset the following morning.  In the afternoon of
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the second day, the nets were checked and moved to the wetland side of the flow
control structure, where they were set in the inlet channel, the wetland itself, and at the
inlet structure to observe fish movement toward the wetland.  Nets were again left
overnight, checked and reset in the morning of the third day, and left until the
afternoon, when they were checked and removed.  Variations of this net set pattern
occurred at times throughout the survey (ie with nets set in the morning instead of the
afternoon), however the length of net set remained consistent.

The above methods broke the data collected into two periods: a day period, and a
dusk-night-dawn period (herewith referred to as the “night” sample).  This enabled the
determination of peak fish activity times and recommendations to be drawn about
improving structure management (ie removal of fish gates during times of maximum
native fish activity and installation at times when carp were most active).

Figure 1. Standard sample showing staggered net set.
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Net set was staggered either side of the structure to ensure that none of the nets would
confound the catches of any of the other nets.  For instance, if nets were set on both
sides of the inlet structure at the same time, there is a potential to remove fish from the
system prior to them moving through the structure in either direction, thus
confounding the data collected.

Nets per wetland
In each wetland, nets were set as follows:
• in the river (or anabranch) adjacent to the wetland inlet (four nets);
• in the inlet channel on the river side of the structure (two nets);
• in the inlet channel on the wetland side of the structure (two nets);
• in the wetland (four nets); and where possible
• at the inlet structure itself (typically one net, set for upstream or downstream

movement on consecutive days).

The position of nets during each sample period is shown in Figure 2.

Figure 2. Typical positioning of nets.

Nets were set at these locations in order to capture
• fish available to move into the wetland (nets set in the river or anabranch);
• fish that are potentially willing to move into the wetland, or who have moved out of

the wetland through the structure successfully (nets set in the inlet channel on the
river/anabranch side);

• fish that have successfully moved through the structure from the river/anabranch
side, or are trying to move out of the wetland (nets set in the inlet channel on the
wetland side); and

• those fish who are inhabiting the wetland and not trying to move through the
structure (nets set in the wetland).

Directional net set
River/anabranch and inlet channel nets
In order to determine the direction of fish movement at each site, nets in the
river/anabranch and inlet channels were set to limit the fish catch, and sample fish only
moving in one direction.  This was achieved by temporarily fixing the net leader to
either the left or right side of the entrance hoop with cable ties.
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Where directional information was required, nets were set parallel to the bank with the
entrance hoop facing up or downstream as desired.  The body of the net was set within
one to two metres from the bank, and the leader extended forward at an angle toward
the bank.  Stakes were used to secure the collection end and leader in place, and a
weight was attached on the opposite side of the entrance hoop to the leader to prevent
the net rolling over.

Where possible, nets were set in water not much deeper than the entrance hoop
(usually around one metre), however the water depth may have been up to three
metres at times.

Wetland nets
At sites within the wetland, nets were set perpendicular to the wetland edge.  The
leader was attached to the centre of the entrance hoop and extended toward the shore.
The net was then stretched in the opposite direction, with the collection end toward the
centre of the wetland.

Where water depth was not great enough to have the net completely submerged, nets
were set some distance from shore, but always perpendicular to it.  As with the
river/anabranch and inlet channel nets, a foam float was inserted into the collection end
to allow air breathing animals to survive, and a weight attached to the entrance hoop
on the side of the prevailing wind to prevent the net from rolling over.

Inlet structure nets
In order to sample fish movement at each flow control structure, nets were attached to
one cell of the flow control structure to catch fish as they moved through.  This
occurred at Lake Littra, Pilby Creek Lagoon, Lake Merreti (permanent and upstream
temporary inlets) and Little Duck Lagoon, and generally required the development of an
adapted fish gate.

No inlet structure net was set for Werta Wert Lagoon inlet structure, as no fish gates
were present, and no inlet structure net was set at Loveday Wetlands due to vandalism
(removal) of the inlet structure net guides soon after their installation.

The adapted fish gates were made identical to those gates already present at the
structure, but with a “D” shape section cut out of the base of the mesh (flat edge of the
“D” on the base of the mesh gate).  A leaderless fyke net was then attached to the
mesh to catch all fish moving or attempting to move through the structure. The
adapted fish gates were slid into position using guides already present, or those
attached for the purpose of sampling.

Normal management of the wetland was able to continue during the sample period, as
all the fish gates remained in place.

The only sites where an adjusted fish gate was not installed to the flow control structure
was at Lake Merreti wetland.  At the main inlet structure for this wetland (which is
connected at pool level flows), at high flows, a large drum net was employed to catch
fish moving through the structure with the water.  This type of net was deemed
necessary due to the high water velocities encountered at times of high flow, and the
possibility of debris building up and breaking through an adjusted fyke net, and the
almost certain damage to fish captured in the net.

The 10m long “drum” style net was made from synthetic mesh (approximately 25mm
bar length).  It possessed a series of 1.2m diameter aluminium tubing hoops for
support, and a single funnel leading to the collection end which was tied with a draw
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string.  The net was attached to an aluminium guide that was slid over the end of the
inlet structure’s pipe, with the collection end tied to a tree, so that any fish captured
were kept out of the high water velocities.  

During low flow periods, this net was replaced with a small drum style net of the same
mesh size.  This net possessed a single funnel that was placed over the end of the inlet
pipe, and led to a single collection area 1.2m diameter.  Fish were collected from this
net by means of an aluminium gate.

A small rigid framed box style net was also used for the capture of fish at the inlet
structures on the temporary inlets to Lake Merreti.  This net comprised a metal box
shape frame, with synthetic mesh (approximately 25mm bar length).  Fish entered the
net through a centrally located entry point, leading directly into the body of the net.
Fish were also collected by means of a gate present in the side of the net.

Water quality and flow readings
Water quality

Water quality was measured at the flow control structure, and at each net, with the
exception of inlet channel nets, where only one measurement was taken due to the
close proximity of the nets to each other.

Measurements were generally collected in the afternoon when nets were set, but when
this was not possible, readings were taken in the afternoon sometime during the net set
period.

Five water quality parameters were measured using a HORIBA U–10 automated water
quality machine.  Water quality parameters recorded using this machine were turbidity
(Nephelometric Turbidity Units –“NTU”); dissolved oxygen (mg/L); pH; water
temperature (°C) and conductivity (mS/cm or µS/cm).

To account for the variation occurring with this machine when measuring turbidity and
dissolved oxygen, four readings were taken for each of these parameters and averaged
for each sample.

Where the HORIBA U-10 was not used, a handheld TPS conductivity-salinity-pH-
temperature meter (model WP-81), and a handheld TPS dissolved oxygen-temperature
meter (model WP 82) were used.  As the names suggest, these machines measured
conductivity (mS/cm or µS/cm); pH; temperature (°C); and dissolved oxygen (ppM).

All machines were regularly calibrated.

A visual measure of light penetration into the water column was also recorded using a
secchi disc.  This method measures the depth to which a black and white disc can be
seen, as it is lowered into the water column.  The point at which the disc reappears on
raising it from its disappearance point is known as the secchi depth.  Secchi depth was
measured to ensure a measure of turbidity was always taken regardless of the water
quality checker used.

All conductivity readings were converted to EC units prior to analysis.  Similarly, all
dissolved oxygen readings were converted to mg/L.
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Flow
Water depth and flow were usually recorded for every net at the same time as water
quality, but may have been taken at any time during the net set period.  Flow readings
were taken using a “Flow Mate 2000” flow meter.

Readings were taken at mid-depth of the water column at each net, with the exception
of inlet channel nets, where flow was often only recorded once due to the close proximity
of nets.  The mainstream flow was also noted (as a subjective scale of still-strong flow).

At flow control structures, a flow profile was recorded.  Flow measurements were taken
at 10%, 50% and 90% of the culvert width, and at the surface, 20%, 50%, and 80% of
the water depth.  Water movement into or out of the structure was also noted. 

Biological records
All fish captured were identified to species level where possible.

Where catches were over 15 specimens per species, 15 individuals were measured to
the nearest millimetre (fork length for forked tailed fish; total length for others).  All fish
over the 15 measured individuals were counted.  Where exceedingly large numbers of
one species were present in a sample, an estimation of the total number of individuals
was carried out.

Fish health (eg healthy, dead, ulcers, and parasites), sex, and sexual condition (eg
running ripe, breeding) were also recorded, although not used during analyses.  This
data is stored on the project database held with the Australian Landscape Trust office,
Calperum Station.

All fish, including carp, were released as soon as they had been processed.  All fish were
released in order to minimise the impact of the sampling process on the fish population.
Destructive sampling of carp and other introduced species (by removing them from the
water) may have resulted in a skewed representation of their abundance over time in
comparison with the natives as a direct result of the sampling process.  By returning all
fish to the water after processing, the effects of the sampling methods on the fish
population could be minimised.

Fish tagging program
In April 2001 a fish tagging program was initiated.  Only robust fish such as carp,
goldfish, callop and redfin perch were tagged to monitor their movements.  Although
very common, bony bream were not tagged, as they stressed easily through the capture
process, and readily died without being tagged.

All robust fish greater than 170mm were tagged with a coloured, and uniquely
numbered plastic dart tag when captured.  The tags were divided into three colours:
blue for fish between 170 and 300mm; yellow for fish between 300 and 500mm; and
red for fish >500mm.  All tags possessed a unique identification number, the words
“Fish Research” and the contact details for the Australian Landscape Trust at Calperum
Station.

Non target species
A number of non target species were captured using the above methods during the
surveys including invertebrates, turtles, and ducklings.  These animals were released as
the catch was sorted.
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Few records exist for the distribution of turtles throughout the state and the health of
their population, therefore a decision was made to identify the turtle to species, record
their upper carapace length and mid-width, and any damage to their shell or body.
Data collected about these off-target species will briefly be presented here; it is stored in
the project database held with the Australian Landscape Trust office, Calperum Station.

Sample frequency
During high flow periods, samples were taken at each wetland once within every
10,000ML/day rise in water level.  Due to the rapid flow recession, sampling every
10,000ML/day drop was not possible.  Only one sample was therefore taken during the
flow recession, followed by one on return to pool level conditions.

The temporary wetlands within this project were monitored when flows were available
to them.  This only occurred from late November 2000 to early January 2001.  
Water levels within Chowilla Oxbow became too shallow to sample after January 4
2001, although water was artificially held back in Werta Wert Lagoons and Lake Littra
until mid January 2001, allowing one additional sample to be taken from these
wetlands.

All other wetlands were sampled throughout the project from November 2000 to
December 2002.  During the high river flow of 2000-01, sampling was undertaken at
the frequency described above.  During regular low flow periods (pool level flows),
samples at pool level wetlands were undertaken seasonally.

In 2001, when no high river occurred over spring/summer, samples at wetlands
connected at pool level were taken monthly from October to January to record fish
activity during this period.  Only one sample was taken in summer 2002 (December).

Site selection and wetland management during project
Wetland sites were chosen to reflect a range of flow control structure types present on
rehabilitated wetlands that filled at a range of river flows.  All wetlands were situated in
the Riverland region of South Australia, from the New South Wales / South Australian
border in the east, to the township of Cobdogla in the west (approximately 100km
linear distance).  Plate 2 indicates the location of all wetland sites upstream of Renmark,
Plate 3 indicates those wetlands sampled downstream of Renmark, whilst Appendix B
indicates the GPS positions of nets.

Temporary wetlands
Three temporary wetlands were sampled during this survey, all present on the Chowilla
floodplain.

Lake Littra (high level temporary wetland)
Lake Littra wetland is located on the New South Wales/South Australian border,
approximately 60km north east of Renmark (Plate 4a).

Lake Littra is a deflation basin with an area of 69ha.  It is filled from Punkah Creek via a
single, shallow, approximately 700m long, inlet/outlet at flows of between 47,200 and
62,000ML/day.  When full, Lake Littra reaches a maximum depth of about one metre.
Naturally, this wetland drains back to Punkah Creek on a flood recession.

Lake Littra has a flow control structure installed on the inlet channel near its junction
with the wetland (Plate 4b).  The flow control structure was constructed in 1995 and
comprises two large box culverts with internal diameter of 126cm x 125cm, and an
outside diameter of 138cm x 140cm.  The structure is 3.64m in length.  Revolving fish
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Plate 2. Location of sample sites upstream of Renmark.
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Plate 3. Location of sample sites downstream of Renmark.



gates were installed on the upstream side of the culvert in 1996.  These gates comprise
aluminium “security” mesh screens with openings 97mm wide x 33mm high, and
10mm wide metal rods welded vertically in the centre of these openings (effectively
halving the opening size).  Drop board guides are present on the downstream side of
the culvert to allow water to be held back in the wetland during flood recession.

Red gums (Eucalyptus camaldulensis), black box (Eucalyptus largiflorens), river coobah
(Acacia stenophylla), lignums (Muehlenbeckia florulenta) and spiny sedge (Cyperus
gymnocaulos) dominate the vegetation that surrounds the lake.  A small patch of lignum
occurs centrally on the lakebed.  No aquatic plant growth was observed during the
sample period (spring/summer 2000/01). 

Littra Inlet Channel
The shallow, temporary, 700m long inlet channel to Lake Littra winds its way across the
clay floodplain through areas of lignum and adjacent areas of dry land tea-tree
(Melaleuca lanceolata) and black box growing between the inlet and the lake.  On the
wetland side of the structure, the inlet channel is short (approximately 280m) and
defined, and passes through dense lignum before entering the wetland.

The inlet channel sample sites were just upstream and just downstream of the structure
(Plate 4c).  No aquatic or riparian vegetation was present either in the channel itself or
on the adjacent banks, although areas of lignum were present both upstream of the
structure (prior to the sample sites) and downstream (after the sample sites).  The inlet
channel around the structure was composed of clay and rock rubble (left over from
construction). 

Punkah Creek
Punkah Creek is a permanent, narrow, relatively shallow secondary anabranch of the
River Murray.  It is located nearest the upland edge of the Chowilla floodplain, and is
fed from a primary (un-named) anabranch of the River Murray, whose source is in NSW.
Downstream of Lake Littra, Punkah Creek feeds into Slaney Creek, which in turn feeds
into Chowilla Creek, before feeding back into the River Murray downstream of Weir and
Lock Six.  It therefore by-passes Weir and Lock Six and contributes to approximately half
the flow into South Australia (the remaining half moving along the main river channel).

At the sample site adjacent to the Lake Littra inlet channel several snags were present.
No aquatic vegetation was observed at the sample sites during the study, with
vegetation on the creek bank being sparse.  Patches of common reed
(Phragmites australis) and spiny sedge were recorded along with areas of lignum.  The
overstorey was equally as sparse, with mature red gums scattered along the creek, and
an area of dense younger red gums growing opposite the inlet to Lake Littra.  

Lake Littra wetland management during project
This wetland filled during the high river flow in summer 2000-2001.  Water was held
back in the wetland from the peak in flow (21/12/00) until mid January 2001 using stop
logs.  Water was allowed to gradually drain from the wetland over several weeks.  Only
two samples were taken at Lake Littra when the flow control structure was closed
(2/1/01 and 14/01/01), all others were taken when the flow control structure was open.

Fish screens were generally in place for all samples with the exception of 9/12/00 when
a build up of debris had caused them to rotate slightly, allowing all fish access to the
wetland for a period of time, although it is unknown how long the screens had been
askew.
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Werta Wert Lagoons (medium-high level temporary wetland)
Werta Wert Lagoons are located along the upland edge of the Chowilla floodplain,
approximately 40km north east of Renmark.

Werta Wert Lagoons is a temporary lake system, consisting of three lagoons totalling
37ha (Plate 5a).  The wetland is filled from Monoman Creek via a single inlet/outlet at
flows of approximately 47,200ML/day.  The inlet is approximately 1.8km long and
passes through a lignum swamp before entering the wetland.  Once filled, water
remains in the lagoons for some time (weeks/months) after a flood recession due to an
elevated sill level.  Sampling took place in the first lagoon only (8.55ha), where water
depths were approximately one metre in the centre of the lagoon.

Three pipes, feed the wetland through an inlet culvert installed beneath an access track,
approximately 200m from the inlet’s junction with Monoman Creek (Plate 5b).  Two
pipes are 90cm diameter, whilst the third is 70cm diameter.  All pipes are approximately
8.6m long, and set slightly above the base level of the inlet structure (220, 110, and
120mm left - right respectively as facing the structure from Monoman Creek side; and
30, 50, and 100mm left – right respectively as facing the structure and looking to
Monoman Creek).  Drop board guides can be installed on the wetland side of the
structure to allow water to be held back in the wetland during flood recession, however
no fish gates are present at this structure.

The vegetation at Werta Wert Lagoons consists of mature red gums and black box lining
the shores.  No aquatic plant growth was observed during the survey (spring/summer
2000/01), however, when the water dries, the wetland beds become densely covered
with ephemeral vegetation.

Werta Wert Lagoons Inlet Channel
The temporary inlet channel to Werta Wert Lagoons is approximately 1.8km long, with
the inlet structure present approximately 250m from its junction with the Monoman
Creek.

On the creek side of the structure, the temporary inlet channel is approximately 50-
70cm deep when full, grassy with mature red gum and river coobah present on its
banks.  Directly adjacent the structure some rock rubble was present (Plate 5b).

On the wetland side of the structure, the inlet channel became shallower with mature
red gum trees present adjacent the structure, and lignum both lining its path, and
crossing it nearer the wetland.

Nets were set adjacent the inlet structure on both sides (Plate 5c).

Monoman Creek
Monoman Creek is a permanent secondary anabranch to the River Murray, both being
fed, and feeding back into, Chowilla Creek.  As such, it by passes Weir and Lock Six,
and, with the other creeks present on the Chowilla floodplain, carries roughly half the
flow into South Australia.

Monoman Creek can reach 20-30m wide in places, and varies in its depth.  At the
sampling location the creek was approximately half its maximum width (approximately
10-15m wide).  Its depth at the sample location adjacent the inlet varied from deep
with steep drop-offs to shallow with a gradual decline.  Directly adjacent the wetland
inlet, the water was quite shallow and the stream width narrow – red gums were
present approximately five metres apart.
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Mature red gums line and overhang the banks of Monoman Creek, with an occasional
river coobah also present.  The understorey includes spiny sedge, grasses and native
licquorice (Glycyrrhiza acanthocarpa), with some sections of bank being bare.
Occasional water primrose (Ludwigia peploides ssp. monteridenis) were also present,
although no aquatic vegetation was observed at the sample sites.

Werta Wert Lagoons wetland management during project
As with Lake Littra, this wetland filled only during the high river flow in summer 2000-
2001, and water was also held back in the wetland from the peak in flow (21/12/00)
until mid January 2001.  Two samples were also taken at Werta Wert Lagoons when the
flow control structure was closed (30/12/00 and 15/01/01).

Chowilla Oxbow Wetland (low level temporary control wetland)
Chowilla Oxbow is located approximately 35km north east of Renmark.  This wetland
has no flow control structure present on the wetland inlet, and was used in this study as
a control wetland to determine fish use of a temporary wetland where fish passage was
unhindered.

Chowilla Oxbow Wetland is a temporary oxbow lagoon, with an area of approximately
ten hectares (Plate 6a). It is filled directly from Chowilla Creek via a short (approximately
seven metres) low level “inlet/outlet” at flows of between 23,000 and 27,000ML/day.
At higher flows, water is able to move in/out of the wetland from the other end of the
oxbow (Plate 6a). 

The vegetation surrounding Chowilla Oxbow Wetland consists of mature red gums,
black box, and lignum.  When dry, the wetland is covered in dense water couch
(Paspalum distichum) (Plate 6b).  This plant continued to persist when the wetland was
full in spring/summer 2000/01, forming a thick covering across the wetland (Plate 6c).
Chowilla Oxbow Wetland is grazed.

Chowilla Oxbow Wetland “Inlet”
Chowilla Oxbow Wetland possesses a very short, shallow (up to 90cm) inlet that
connects it to Chowilla Creek.  This inlet is initially narrow (two to three metres) when
first filling, but becomes quite wide during higher flows (10-15m) – forming more of a
continuation of the wetland rather than an inlet channel.

Dense young red gum trees are present across the “inlet” near its junction with
Chowilla Creek, but little understorey vegetation is present.

Chowilla Creek
Chowilla Creek is one of the major permanent anabranch systems of the River Murray in
South Australia (Plate 6a).  Formed from an old river channel, the creek can be as wide
as the main river channel.  Similarly, it can be deep in places and possess steep banks.
Adjacent Chowilla Oxbow Wetland, Chowilla Creek is approximately 30m wide with
steep banks generally.  Chowilla Creek by-passes Weir and Lock Six, with the permanent
creeks present in the Chowilla floodplain carrying approximately half of the flow coming
into South Australia.

Mature red gums, river coobah and black box line Chowilla Creek, with areas of lignum
present on the floodplain.  Emergent vegetation includes patches of common reed,
marsh clubrush (Bolboschoenus caldwellii), and spiny sedge.  No aquatic vegetation was
observed at any of the sample sites, although curly pondweed (Potamogeton crispus)
and floating pondweed (Potamogeton tricarinatus) have been observed elsewhere.
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Plate 4. a) Lake Littra Wetland (aerial)
December 2000, b) inlet structure (dry)
creek side, and c) inlet structure (wet)
creek side December 2000.

4.a

4.b

5.a

5.c

5.b

4.c

Plate 5. a) Werta Wert Lagoons
(aerial) December 2000, b) inlet
structure (dry) creek side, and c)
inlet structure (wet) creek side.
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6.a

7.a

6.b6.c

Plate 7. a) Pilby Creek Lagoon
(aerial) December 2000, b)
inlet structure (wet) from
wetland December 2000, c)
inlet structure (dry) from
wetland, d) Management of
structure – only one cell open
(previous fish screen design),
e) inlet structure new fish
screen design, and f) Pilby
Creek Lagoon outlet , river
side, showing rubble at
discharge point. 

Plate 6. a) Chowilla Oxbow Wetland –
centre (aerial), b) Chowilla Oxbow
drying phase (from inlet) Jan 2001,
and c) Chowilla Oxbow (wet)
December 2000.

A
ll 

ph
ot

os
 t

hi
s 

pa
ge

 c
ou

rt
es

y 
Sc

ot
t 

N
ic

ho
ls

7.c
7.b

7.f

7.e

7.d



What about the fish? – Improving fish passage through wetland flow control structures in the lower River Murray

M
et

h
o

d
s

32

Chowilla Oxbow Wetland hydrology during project
The temporary control wetland, Chowilla Oxbow Wetland was also only sampled during
summer 2000-2001.  Water filled Chowilla Oxbow Wetland during early November
2000, and water remained in the wetland until soon after the flow peak in the latter half
of December.  By 3/1/01 (the final sample for the wetland), Chowilla Oxbow Wetland
was disconnected from Chowilla Creek, with only 25-30cm of water remaining in
places.

Permanently connected wetlands
Five permanently connected wetlands were sampled during this survey.

Pilby Creek Lagoon
Pilby Creek Lagoon is located approximately 30km north east of Renmark, adjacent Weir
and Lock Six on the Chowilla floodplain (Plate 7a).

A relatively small wetland of 10.8 ha, Pilby Creek Lagoon was permanently inundated
following the construction of Weir and Lock Six in the 1920’s.  In 1992, a flow control
structure was installed on the wetland’s inlet and outlet to change the hydrological
regime of Pilby Creek Lagoon wetland to that of a temporary system.  The wetland has
been managed as such since this time.

Pilby Creek forms both the inlet and outlet channels to Pilby Creek Lagoon, with the
wetland filling indirectly through overflow from the creek.  The inlet channel’s source is
on the upper pool of Weir Six, while the outlet discharges into Chowilla Creek on the
lower pool.  This allows the wetland to be rapidly filled and drained as required.  The
wetland is approximately two metres deep when full.

During high river flows, another connection is made with the river at the opposite end
of the lagoon to Pilby Creek.  This connection is made via another wetland (“Lock Six
Wetland”) to the River Murray directly above Lock and Weir Six at flows of between 35-
40,000ML/day.

The flow control structure on the inlet is an “open topped box culvert” design (Plate
7b, 7c).  This structure is approximately 380m from the junction with the lagoon and
comprises four cells, each 100cm wide x 114cm high x 400cm long.  Each cell is has no
overhead covering, allowing light to penetrate the water column for the full length of
the structure.  Half way along each culvert there is provision for drop boards to be
placed into the structure to hold water out of the wetland (Plate 7d).  These boards can
be layered to the full height of the structure, however water is able to move around the
structure before the full height is reached.

Fish screens are also present on this structure.  Until July 2001, the 80cm high screens
were made from a fine mesh with 10mm x 10mm openings (Plate 7d).  Slots in the side
of each culvert allowed these screens to be slid into place on the upstream side of the
structure.  In July 2001, these screens were replaced with rotating gates.  These gates
comprise metal rods, five millimetres in diameter, welded vertically onto the gates
approximately ten millimetres apart (Plate 7e).  The height of these gates is the same as
the structure (114cm).

The vegetation at Pilby Creek Lagoon consists of mature and young red gums and some
mature black box lining the shores.  Dense lignum is present on the eastern side of the
lagoon, away from the shore.  A fringe of bulrush (Typha spp.) and common reed are
generally present around the wetland, although pigs have damaged this zone at times.
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When full, ribbon weed (Vallisneria americana) and watermilfoil (Myiophyllum spp.) have
been recorded in the open water, although during this survey, dry phase vegetation -
dominated by knot weeds (Persicaria spp.) -provided the submerged habitat
(spring/summer 2000/01, continuing through 2002 following a short dry phase).

Pilby Creek Lagoon Inlet Channel
Pilby Creek Lagoon inlet channel is the section of Pilby Creek upstream of the wetland.
It is approximately one kilometre long and between five and ten metres wide.  Its depth
varies, but is generally one to two metres with steep banks.  On the upstream side of
the structure the inlet is silty, however on the wetland side of the structure, the channel
has a firmer base due to the implementation of drying cycles in Pilby Creek Lagoon.

Bank vegetation includes river coobah, black box, and many overhanging red gums.
Emergent vegetation consists of common reed and bulrush with occasional water
primrose.  The only submerged vegetation observed on the river side of the structure
during the survey was an occasional water primrose.  Small snags were also present.
On the wetland side of the structure submerged vegetation consisted of dry-phase
herbs.  Both above and below the inlet structure was occasionally covered with dense
azolla (Azolla spp.).

Pilby Creek Lagoon Outlet Channel
The outlet channel of Pilby Creek Lagoon is a continuation of Pilby Creek, located
downstream of the wetland.  Pilby Creek continues downstream of the wetland for
approximately 2.2km before it empties into Chowilla Creek, however the outlet
structure is located only 150m past the wetland.  At high river flows (approximately
35,000ML/day) water backs up into Pilby Creek outlet from Chowilla Creek.

The outlet structure on Pilby Creek Lagoon consists of a single pipe 600mm in diameter
set into the Lock Six access road (Plate 7f).  Water release from the lagoon is controlled
by a sluice gate.

Several snags are present in the outlet channel, with overhanging red gums and black
box trees growing on the bank.  A small patch of common reed and small areas of
bulrush grow along the channel at times (as with the wetland, these plants can be
damaged by pigs).  Submerged plants comprised dry phase herbaceous species – no
aquatic vegetation grew at this location during the survey.

Murray River adjacent Pilby Creek Lagoon
The river near Pilby Creek Lagoon inlet is typical of much of the River Murray in South
Australia.  Approximately 100-150m wide at this location, the river possesses steep drop
offs where it scours the bank, and shallow gradual declines in areas of deposition (inside
river bends).  Weir and Lock Six directly influence this section of the river.

Mature red gums line the banks with areas of dense young trees present.  River coobah
and black box are scattered throughout the survey site.  All trees overhang the river
bank in places and snags are present at several locations.  Emergent vegetation consists
of common reed and bulrush, with patches of marsh clubrush also occurring.
Occasional individuals of water primrose and mud dock (Rumex bidens) are also present.
Aquatic vegetation consists of patchy ribbon weed, curly pond weed and floating
pondweed.

Pilby Creek Lagoon wetland management during project
The river sites at this wetland (including the inlet nets on the wetland side of the
structure) were monitored throughout the study (November 2000-December 2002).



However, due to wetland management permitting two drying events within the project
time frame, wetland sites were not sampled at all corresponding dates.  

The first of the drying events began in late summer 2001 when stop logs were installed
at the inlet flow control structure, and the outlet structure remained open.  The drying
event continued until early July 2001, after which the wetland was refilled.  By the
17/10/01, however, the water depth in the wetland was only deep enough to set two
nets.  Water remained in the wetland until early January 2002, undergoing at least one
short-term drawdown and refilling in early December, after which, a rapid drawdown
was implemented so that only a large pool was left in the wetland on 18/2/02.  The
wetland then remained dry throughout the remainder of 2002, prohibiting samples to
be taken from the wetland side of the structure.

Two other events occurred during the course of the project that have the potential to
influence study outcomes.  Firstly, during the high river flow of spring/summer 2000-
2001, water entered the wetland through a secondary flow path that connects the
wetland to the river just upstream of Weir Six via “Lock Six Wetland”.  This event would
have allowed large fish to enter the wetland, rather than be excluded by fish screens.
At the end of summer 2001, the wetland was completely dried, potentially removing all
fish, however residual water may have remained in the deeper inlet and outlet channels
for some time, providing refuge for some fish prior to refilling in July 2001.

Secondly, as stated in the site description, the original fish screens with 10mm x 10mm
openings were replaced with vertical aluminium rods (each approximately ten
millimetres apart) in July 2001 (Plates 7d, 7e).  The change in fish screen type and size
may have allowed different fish to enter the wetland during the second refilling event,
thereby influencing the species composition within the wetland during this refilling
phase.

Lake Merreti
Lake Merreti is located approximately 20km north east of Renmark on the Ral Ral Creek
floodplain.  The wetland, and the surrounding floodplain, form part of Calperum
Station.

A large deflation basin, Lake Merreti has an area of 391ha (Plate 8a).  It is connected to
Ral Ral Creek by three inlet channels, one of which is permanent, the other two are
temporary, feeding the wetland at higher river flows. 

When filled at pool level, Lake Merreti has a maximum depth of between 80cm and one
metre.  During high river flows, when Lake Merreti is filled to capacity, both Clover Lake
(to the east) and Woolpolool Swamp (to the west) receive its overflow.  Flows to Clover
Lake occur from Lake Merreti when levels in Ral Ral reach 18.2m AHD (river flows of
between 55,000 and 60,000 ML/day).  At normal pool level Ral Ral Creek is around
16.35m AHD).

All inlets to the wetland have structures present approximately 10-20m from their
source.  The main inlet has a flow and fish control structure, whilst the two temporary
wetlands have fish control gates only.

The vegetation surrounding Lake Merreti consists of mature red gum and black box
overstorey, and river coobah and lignum understorey.  Red gum seedlings have grown
in the edge zone in response the wetting and drying regime implemented since 1994.
Isolated patches of cumbungi and phragmites, and extensive areas of the spiny sedge
(C. gymnocaulos) are present on the lake edge.  During a recent dry phase (2000),
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extensive and prolific growth of slender knot weed and creeping monkey-flower
(Mimulus repens) were observed on the lake bed.  In the following wet phase the knot
weed persisted for some time before breaking down and being replaced by expansive
areas of ribbon weed, and watermilfoil.  Subsequent drawdown of the lake and the
feeding action of waterbirds resulted in these species decreasing in distribution around
the lake (becoming limited to deeper water).

Main Inlet
Lake Merreti’s main inlet connects to Ral Ral Creek at pool level via a 1.7km long
channel.  The inlet channel is shallow at its junction with Ral Ral Creek (approximately
40cm), but forms a deep pool adjacent the structure (three metres at the deepest
point).  Past the flow control structure on the wetland side, the channel again forms a
deep pool adjacent the structure (1-1.5m), prior to it becoming shallower (30cm near
the wetland junction, but 50-60cm at the sample site).

The flow control structure on the main inlet to Lake Merreti was originally installed to
store water in the lake for the purpose of offsetting the effects of high salinities on
irrigators using a pumping station downstream of the lake on Ral Ral Creek.  The culvert
therefore has not been designed for wetland rehabilitation or fish movement, although
this is its current purpose.

The structure is located approximately 15m from the junction with Ral Ral Creek.  It
comprises two 90cm pipes, one of which controls inflow and out flow to and from the
wetland by means of a sluice gate, located two-thirds the way along the pipe (Plate 8b).
The second pipe has flap valves on either end of the pipe, so that water can be stopped
from entering or leaving the wetland.  Should water be required to pass through the
second pipe, both flap valves need to be manually raised.  Both pipes are 17.8m long.

On the upstream side of the structure a cage (514 x 153cm) surrounds both pipes.
Two solid walls are present either side of the cage, with the top covered in aluminium
“security” type mesh (openings 97mm wide x 33mm high).  The front of the cage
comprises six rotating aluminium mesh screen gates (Plate 8c).  Each of these gates is
145cm high and 78cm wide.

Mature red gums line and overhang the inlet channel along its length, with many snags
present.  Upstream of the structure, one side of the inlet channel is bordered by
common reed from the creek to the structure, and partially crosses the channel in one
place. On the other side of the channel, common reed is only present at the creek –
inlet junction. 

The only aquatic vegetation (ribbon weed) present in the inlet channel is located at the
creek – inlet junction.  Upstream of the structure azolla can form a thick blanket at
times.

Temporary Inlets
Two other inlet channels feed the wetland during high river flows, and possess inlet
structures, which were installed in 1997.  These structures do not act as flow control
structures, but have been installed on these inlets in order to stop the movement of
adult carp into the wetland during small-medium level floods.

Both structures have four rotating aluminium “security” type mesh gates, headwalls
constructed from red gum sleepers and rock rubble, but differ in their dimensions (Plate
8d, 8e).



Both inlets lack submerged or dry-phase vegetation in their channels, although are lined
with red gum and black box trees.  Several fallen branches would provide habitat for
fish when the inlets contain water.  When flowing azolla and debris, such as leaves and
branches, can build up on the upstream side of the structures, requiring removal to
maintain water movement.

Upstream inlet
The most upstream temporary inlet to Lake Merreti is approximately 2.5km long and
connects to Big Hunchee Creek (which feeds directly into Ral Ral Creek).  This channel
begins to flow at approximately 27, 000 ML/day (water past fish control structure), and
can be approximately two metres deep when full, although less at the inlet structure
(Plate 8e).  This inlet began to flow in mid October 2000 during a medium flow peak
(maximum flow of 42,050ML/day).  Water levels dropped during late October 2000
and November, before again increasing in December 2000 (peaking at 63,427ML/day).
This inlet was only monitored during the first flow in October using a structure net and
two fyke nets (60cm “D” front hoop, 3mm mesh, single 3m long leader).  The results
were not incorporated into the analysis for this project due to the different mesh size
used, and the lack of personnel resources enabling sampling to continue throughout the
high river.

The upstream inlet has an opening in the structure 300cm wide, bordered either side by
a rock rubble and earthen headwall, and, on the left hand side as you face the creek, a
22m long earthen bank to prevent water moving around the structure during times of
high flow.

Each of the rotating gates are 70cm wide x 132cm high, and one half of the structure
has a permanent mesh cage present on the downstream side to monitor fish movement
into the wetland (Plate 8d).  This cage acts to move fish into a removable net when
monitoring occurs, and possesses smaller mesh (25mm x 25mm) (Plate 8e).

Middle inlet
The middle temporary inlet channel is approximately 1.8km long and connects to Ral
Ral Creek at the confluence of Ral Ral Creek, Big Hunchee Creek and Reny Creek,
approximately mid way between the main inlet (downstream) and upstream temporary
inlet.  This inlet begins to flow to the wetland at river flows of approximately 40,400
ML/day (water past the structure), which occurred for a short period of time in mid
October 2000, before dropping in late October and November, and again flowing in
December 2000.  This inlet was not monitored at all during the study due to resource
constraints.

This inlet channel is deeper (2-2.5m) and narrower than the upstream inlet.
Consequently the inlet structure is also narrower (275cm), but retains the majority of
the inlet’s natural width.

Each of the four rotating gates 69cm wide x 120cm high.  As with the upstream inlet,
there is a permanent mesh cage present on the downstream side of the structure to
monitor fish movement into the wetland.

Ral Ral Creek
Ral Ral Creek is a permanent anabranch of the River Murray running from Calperum
Station to the township of Renmark.  It is generally narrow (approximately 10m wide),
although can be up to 400m (Ral Ral Widewaters).  Ral Ral Creek is mostly quite deep,
although in wider sections it may be shallow (approximately one metre).  It is very
“snaggy” in places, and is under the influence of Weir and Lock Five at Renmark.
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Adjacent the main inlet
Ral Ral Creek is approximately 10m wide adjacent the main inlet to Lake Merreti.  Here
the creek is over three metres deep in places, with steep drop offs on the inside of
bends.  Gradual slopes also occur on the inside of bends, where sand is often deposited.  

Several snags are present in the area, and aquatic vegetation comprises patches of
ribbon weed and curly pond weed.  Mature red gums overhang the creek, with
common reed and some marsh clubrush forming the emergent species.  Spiny sedge is
also observed here.

Adjacent the upstream temporary inlet
The section of Ral Ral Creek adjacent the upstream temporary inlet is approximately
100m wide.  Apart from the presence of spiny sedge and mature red gums, the creek
bank is generally bare.  Small areas of ribbon weed occur at this location, although the
submerged vegetation is generally depauperate. 

Adjacent the middle temporary inlet
This section of Ral Ral Creek is very narrow (10m wide) with steep banks and snags.
Red gums overhang the creek, with common reed present at the waters edge.  No
submerged vegetation was recorded at this location.

Lake Merreti wetland management during project
The wetland, inlet and creek sites were all surveyed throughout the study period
(November 2000 – December 2002), with the exception of one date (April 2002), when
water was too shallow within the wetland to enable nets to be set (nets were set in the
inlet channels and creek at this time however).

During the study the flow control structure was open and closed intermittently for
various periods of time to allow for partial drying of the lake and maintenance of
riparian vegetation fringe.  The four partial drying events implemented during the study
included a two month period during late 2000, a two month period in early 2001, a
five month period during mid 2001, and a two week period in early 2002 (Table 1).  All
data and analyses have been adjusted for these management actions.

Until October 2001, only one of the two pipes present on the structure was used to
deliver water to the wetland.  However, at this time it was determined to open the
second pipe to facilitate water movement into the wetland due to high evaporation
rates and low flows occurring in Ral Ral Creek.  Whilst the second pipe was open at non
sample periods, at sampling times the second pipe was closed to allow for
representative flow readings at the structure (ensuring that they were comparable to
previous readings), and capture of fish at the structure (the attachment of a structure
net on the second pipe was not possible).

During the course of the project, observations were made of fish congregating around
on the wetland side of the closed main flow control structure.  This occurred on the
29/11/00 when thousands of juvenile Australian smelt were seen milling around
permanent inlet structure on wetland side, and large fish were noted jumping inside
pipe.  On the 8/3/01, thousands of bony bream (150-200mm) and some carp and
goldfish were observed gulping air on wetland side of structure, whilst on the 24/3/01
thousands of carp and goldfish (150-200mm) were observed gulping air on wetland
side of structure (no bony bream were observed at this time) (Nichols pers. obs. 2001).

It is thought that these fish were possibly attracted to a leak in structure (due to the
sluice gate not closing properly), which would have supplied a trickle of “fresher” water
to the inlet channel.  In the inlet channel, it is possible that due to low flow conditions



(with the structure closed), dissolved oxygen levels may have become very low, thereby
causing fish to move toward the better quality water.  It is possible that the use of a
small freshwater inflow could be used as an “attractant flow” to encourage fish to a
particular location, or out of a wetland prior to undertaking a drying event.  This theory
was investigated at Pilby Creek Lagoon wetland prior to that wetland being completely
dried in 2001, although no statistical analysis was undertaken on the results, it appeared
that an attractant flow did encourage fish activity, and could potentially be used as a
management option.  Further investigation is warranted (refer Objective 4 below).

Table 1. Lake Merreti management event dates, actions and observations

Management Dates Management Action  

8/9/00 - 28/9/00 Inlet opened to refill wetland
(1 month) 

29/9/00 - 6/12/00 Inlet closed to maintain low lake levels but opened on
(2 months) 5 occasions for fish monitoring (3 days each)

Only 2 samples affected for this study (15/11/00, 29/11/00)

Temporary inlets began to flow around 8/10/00 (upstream inlet) - 
12/10/00 (middle inlet)  

7/12/00 - 2/2/01 Inlet opened to fill lake with rising river
(2 months) 

3/02/01 - 27/3/01 Inlet closed to dry lake margins and support growth of red

(2 months) gum germinants, opened 8/3/01 for attractant flow  

27/3/01 - 30/3/01 Inlet opened for fish monitoring
(3 days) 

30/03/01 - 3/9/01 Inlet closed, lake levels lowered
(5 months)

5/4/01 Additional channel excavated near structure on wetland side
and existing channel deepened at junction with the creek 
(river side of the structure) to facilitate flows

11/4/01 Inlet opened for overnight attractant flow (full for a short time, 
then 1/4 overnight)  

3/9/01 - 28/2/02 Inlet opened fully, second pipe opened ? to facilitate 
(5 months) additional flows

30/10/01 Flap valves on second pipe opened completely to maximise flow 

28/2/02 - 12/3/02 Inlet closed to partially dry wetland
(2 weeks) 

12/3/02 – present Inlet opened, lake refilled
(9 months until end of 

study in December 2002)   
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Plate 8. a) Lake Merreti,
b) permanent inlet
structure (wetland side),
c) permanent inlet
structure fish screen, d)
temporary inlet
structure, e) Ral Ral
Creek.

Plate 9. a) Gurra Control Wetland
from Gurra Creek, b) Gurra
Control from back of lagoon.
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Plate 11. a) Loveday Wetlands,
b) main inlet structure prior to
adjacent reed growth, c) Murray
River adjacent.

Plate 10. a) Little Duck
Lagoon, b) inlet structure
creek side, c) inlet structure
wetland side
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Gurra Control Wetland (permanent control wetland)
Gurra Control Wetland is located approximately one kilometre south of Little Duck
Lagoon on the Gurra Gurra floodplain.  In this study, Gurra Control Wetland was used
as the permanent “control” wetland to monitor fish use of an unmanaged permanent
wetland (Plates 9a, 9b).

This 1.8 hectare wetland is permanently connected to Gurra Gurra Creek near its
junction with the River Murray (140m downstream).  The wetland does not possess a
distinct inlet channel, nor a flow control structure at its connection with Gurra Gurra
Creek, although a small (narrow and short) channel connects the wetland to the River
Murray at the opposite end to Gurra Gurra Creek.

Approximately 1-1.5m deep throughout, Gurra Control Wetland is generally fringed by
a band of bulrush, with common reed and water couch present in places.  Patches of
ribbon weed are present in the wetland, with dense growth of curly pondweed
occurring in late in 2001.  Red gums, river coobah, occasional black box and lignum
surround the wetland.

Gurra Gurra Creek
Gurra Gurra Creek is a lengthy permanent channel linking the River Murray to the
expansive Gurra Gurra Lakes.  The study area adjacent Little Duck Lagoon and Gurra
Control Wetland is approximately 30m wide, and is at the bottom end of the creek near
where it connects with the River Murray.  All permanent water at this site is under the
influence Weir and Lock Four, which is located just downstream.

Under river pool conditions water is drawn into the creek to replace water lost through
evaporation in Gurra Gurra Lakes.  During high flows however, the direction of water
movement changes as temporary channels in the north of the complex feed into Gurra
Gurra Lakes, before feeding Gurra Gurra Creek and emptying back into the River Murray
below Little Duck Lagoon and Gurra Control Wetland.  At these times rises in salinity
can occur downstream of the lakes due to the greater influence of the salinised
floodplain and lakes on the water quality of Gurra Gurra Creek.

Gurra Gurra Creek’s channel is formed from an old river channel meander, and is
therefore deep in places.  It is bordered by red gums, river coobah and black box that
overhang the creek in places.  A fringe of common reed occurs throughout the system,
combining with bulrush at times.  Many snags are present in the channel.  Areas of
ribbon weed and pondweed (curly and floating) can also be found.

Gurra Control Wetland hydrology during project
This permanent control wetland was sampled throughout the study (November 2000-
December 2002).  Water levels remained constant throughout.

The only change that occurred during sampling for this project was in spring and
summer 2001-2002, when curly pondweed (Potomogeton crispus) grew densely
throughout the entire wetland (uniform rather than patchy in its distribution).  Densities
such as this are unusual due to the fragile nature of this water plant.

Little Duck Lagoon
Little Duck Lagoon is a small shallow wetland approximately 2.5 hectares in size located
opposite the township of Berri on the Gurra Gurra floodplain.
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Permanently inundated since construction of Lock and Weir Four in 1929, this wetland
was chosen as a rehabilitation site in 1996, and a flow control structure installed on the
15m long inlet/outlet.  Fed from Gurra Gurra Creek, and present on the salinised Gurra
Gurra floodplain, this wetland is successfully resisting the effects of salinisation that has
claimed the adjacent Causeway Lagoon and surrounding floodplain (Plate 10a).  During
high river flows a 500m long flow path connects the lagoon to the River Murray via a
second lagoon at the opposite end to the inlet 

The inlet structure consists of a single five metre long pipe (internal diameter 70cm)
(Plate 10c).  A sliding sluice gate on the upstream side of the culvert controls water
movement into and out of the wetland (Plate 10b), whilst two aluminium “security”
type mesh gates (openings 97mm wide x 33mm high) can be slid into place at the end
of the headwalls on the upstream side to control fish access to the wetland.  The
structure itself and its associated access bank is overtopped (bypassed) at flows of 30-
40,000ML/day.

Dense mature red gums surround the Little Duck Lagoon with an occasional river
coobah understorey.  A dense band of common reed surrounds nearly the whole
lagoon, with large areas of bulrush present in the wetland itself and in the inlet channel
on Gurra Gurra Creek side of the structure.  During a recent drawdown, water couch
grew extensively throughout the wetland.  When the wetland was re-filled this
vegetation decomposed producing anoxic conditions in the wetland at the beginning of
this project, and continuing low dissolved oxygen conditions into 2002.  As 2002
continued, dissolved oxygen levels increased, although no submerged vegetation
established itself in the lagoon.  Conversely, during the course of the study, bulrush
grew extensively throughout the shallow wetland, spreading to form large, dense
patches by the time of the final survey in December 2002.

Little Duck Lagoon Inlet
Little Duck Lagoon connects to Gurra Gurra Creek approximately 1.3km north of Gurra
Gurra Creek’s connection with the River Murray.  A short and shallow channel cuts
through a stand of bulrush on a bend of the creek to feed the wetland.  The channel is
silty, and narrow (two metres), although the stand of bulrush is quite large
(approximately 10m wide x 10m long).  Near Little Duck Lagoon’s flow control
structure, red gums overhang the channel, water couch and common reed grow on the
bank, and an area of ribbon weed is present on the creek side of the structure.  Azolla
can cover the channel at times (both sides of the structure).

When this project began, the inlet channel led directly to Little Duck Lagoon, which in
turn fed the neighbouring Causeway Lagoon wetland.  In 2000, the direct connection
between Little Duck Lagoon and Causeway Lagoon was blocked and an independent
channel constructed for Causeway Lagoon.  This allowed independent management of
the water regime in both lagoons, but made analysis of the fish captured in the inlet
channel more difficult (it is difficult to distinguish if fish are moving into the shared inlet
to enter/exit Little Duck Lagoon or Causeway Lagoon).

The wetland side of the inlet channel is wider than on the creek side, although it is still
shallow (approximately 15m wide, 50cm deep).  The area has overhanging red gums,
with common reed and water couch on the banks.  No aquatic vegetation was present
during the survey, although extensive water couch growth was present during the
previous dry phase, causing anoxic conditions when the wetland was first refilled.
Azolla was occasionally present, forming a thick covering at times. 
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Gurra Gurra Creek
As Little Duck Lagoon and Gurra Control Wetland are both connected to Gurra Gurra
Creek, this creek site was combined for both wetland sites.  Refer to the above site
description.

Little Duck Lagoon wetland management during project
Little Duck Lagoon was sampled throughout the project period (November 2000 –
December 2002).  Prior to sampling commencing at this site in 2000, the wetland was
filled through overbank flows (around the 9/10/00) and seepage from an adjacent
channel, allowing large carp to enter the wetland despite the sluice gate being present.

By the 31/10/00 Little Duck Lagoon was full, although the water was anoxic, black, and
possessed a foul odour.  On this date the flow control structure (sluice gate) was
removed and fish screens put in place until the 7/12/00, when they too were removed.
On the 20/12/00, the structure was again overtopped, allowing water to enter via a
secondary wetland “Old Loxton Road Lagoon” which joined to the end of the wetland
opposite to the main inlet.

The structure remained open with no fish screens until the 12/3/01 when both the
sluice gate and fish screens were replaced.  The flow control structure then stayed
closed until early November 2001, when the sluice gate was removed and fish screens
engaged.  The structure remained open for the remainder of the project (November
2001 - December 2002).

The first sample taken at the Little Duck Lagoon site was on the 9/11/00, however no
nets were set in the wetland at this time due to the anoxic nature of the water.  The
water continued to have a dark colour and an odour into mid 2001, and although
lessening towards the end of the project, a tannin colour remained along with an odour
when the detritus (rotting water couch) was disturbed.

Despite the initial anoxic conditions, dark colour and foul odour, dissolved oxygen levels
were found to be extremely high on several sampling occasions including 23/10/01,
26/11/01 and 18/12/01, when several sites recorded readings off the scale of the
measuring instrument (>19.99mg/L).

Loveday Wetlands
The Loveday Wetlands complex is located on the eastern side of the River Murray,
approximately four kilometres south of the township of Cobdogla.  This low-lying
complex is permanently connected to the river at pool level.  Survey sites were centred
in Big Mussel and Little Mussel Lagoons adjacent their junction with the main inlet
(Plate 11a, centre left).  When full these wetlands are approximately 1-1.5m deep.

The complex itself comprises several wetlands of high shoreline complexity, totalling
approximately 500ha.  The largest of these, Cobdogla and Loveday Swamps (343.5ha),
have been employed as evaporation basins for irrigation drainage water since 1951
(Plate 11a, background) (Jensen et al. 1999), and are now highly salinised and remain
permanent.  The remaining permanent and temporary wetlands (Big Mussel, Little
Mussel, Pipeline, and “Out the Back”) are not as salinised, and have been subject to a
rehabilitation project since 1983, aiming to rehabilitate degraded vegetation and
implement drying cycles on the permanently inundated wetlands.  

Nets were set in Big Mussel and Little Mussel Lagoons - Little Mussel Lagoon has an
approximate area of 21.6ha and Big Mussel Lagoon has an approximate area of 70.6ha,
with the area of interest (ie the area where the nets were set) being 9.32ha.
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The flow control structure for these wetlands is located 270m along the main inlet
channel from the river and 190m to the junction with the wetland.  The structure itself
comprises six box culverts with an internal diameter of 122cm wide x 122cm high
(outside diameter of 134cm x 134cm), and a length of 122cm (Plate 11b).  A central
30cm wide strut extends past the box culverts both upstream and downstream of the
structure by 120cm.  The strut aims to provide stability to the structure during periods
of high flow, minimising the possibility of the structure movement at these times.

Stop logs and/or metal plates that are slid into place on the upstream side of the
structure control water movement to and from the wetland (Plate 11c).  Two cells
possess rotating aluminium “security” type mesh gates to control fish access into the
wetland (Tucker, 2003).  The openings in the mesh are 97mm wide x 33mm high with
10mm wide metal rods welded vertically in the centre of each hole, effectively halving
the opening size.  These gates can be slid into place using the guides present on the
upstream side of the structure.

In many areas, the vegetation surrounding Little and Big Mussel Lagoons has been
severely affected by salt.  Around the lagoons salt scald and samphire (Sarcocornia spp.),
and large areas of lignum are present.  A narrow, less salinised, zone around the lagoons
allows the growth of red gums and lignum, with dense growth of common reed
present on the wetland edge, grading to thick bulrush in the water.  Patchy areas of
marsh clubrush, river clubrush (Schoenoplectus validus) occur around the wetland edges,
and large patches of ribbon weed are present in deeper water.  During drawdown, the
native knot weed and the introduced bushy star wart (Aster subulatus) also grow in the
wetland proper. 

Loveday Wetlands Inlet
The main inlet to Loveday Wetlands is approximately 460m long and enters the wetland
complex at the junction of Little Mussel Lagoon, and Big Mussel Lagoons.  It is
approximately five metres wide, and up to 1.2m deep.  Throughout most of its length,
overhanging red gums, lignum and common reed fringe the channel.

Prior to sampling, the inlet channel was partially blocked by extensive growth of
bulrush.  This bulrush was removed from the inlet channel either side of the structure in
late 2000 using excavation equipment, providing a clear flowpath of at least 50m in
either direction.  In early 2002, these reeds had started to encroach on the channel
once again, forming a dense area of growth directly adjacent the structure on either
side, and invading the channel further upstream and downstream by the time of the
last sample in December 2002.

Murray River adjacent Loveday Wetlands
This section of the River Murray is under the influence of Weir and Lock Three at
Overland Corner.  Loveday Wetlands are opposite Wachtels Lagoon, a large, permanent,
and relatively shallow lagoon and surrounding floodplain that is heavily used by
recreational fishers who camp and fish in the mainstream.

Adjacent Loveday Wetlands the River Murray is approximately 100-150m wide.  It is
fringed with common reed, with red gum, river coobah and black box growing on its
banks.  In places these trees overhang the river (particularly on the Loveday Wetlands
side).  Several snags are present, together with patches of ribbon weed, curly pondweed
and floating pondweed.
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Loveday Wetlands wetland management during project
As with the other permanently connected wetlands, Loveday Wetlands was sampled
throughout the project.

The first sample for this wetland was taken on 7/11/00, when the flow control structure
was fully open and the fish screens had been removed for some time (late September
2000) in response to a small flow peak in October 2000.  The structure remained open
for approximately one year, before being closed in October 2001.  For the two samples
taken just prior to the structure being closed, management of the structure was such
that only two of the six cells were open to allow water movement into and out of the
wetland.

The structure remained closed for the rest of the project period, with flow into the
wetland only occurring through leakage between the stop logs, and the wetland
undergoing a major drawdown event.  One exception to this was the partial opening of
the structure in January 2002, when two cells were opened for a short period of time
(opened sometime between 20/12/01 and 17/1/02).  By the next sample in May 2002,
the structure was again closed, although some leakage was occurring.

Carp were noted trying to escape the wetland, jumping up against the structure on
29/11/01 and 20/12/01 when the flow control structure was closed and water on the
wetland side of the structure was quite low –with poor water quality (low dissolved
oxygen levels).

Statistical methodology and data storage

All data collected were stored in a Microsoft Access database developed by staff of the
Australian Landscape Trust.  Data were stored in a series of linked tables for fish and
turtles, water quality, and structure details.  All individual fish (and turtle) information
were linked to the site location.  The database for this project is currently stored with
the Australian Landscape Trust.  Example entry pages are presented in Appendix C.

All data from each net was standardised by net set period of each net (in hours) prior to
analysis.  Unless otherwise stated, all normality and statistical tests were undertaken
using S-Plus 2000 (Insightful 2001).

Analyses undertaken investigating movement to and from the wetlands employed catch
data taken from nets set within the inlet channel either side of the structure.  It is
assumed that each of the four nets set in the inlet channel sampled a different
component of the moving fish community as described in Table 2.  There is a small
possibility that Net 2 and Net 3 will have captured fish that have moved up to the
structure and turned around to face the opposite direction.  Although minimal, the
capture of these individuals should be considered during interpretation of the results.
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Table 2. Assumed component of fish community sampled by each of the nets set in
wetland inlets.

Net number Direction and position Migratory component sampled

1 Downstream facing net on Fish migrating upstream towards the
the wetland side of the structure structure  

2 Downstream facing net on the Fish which have successfully migrated
river side of the structure upstream through the structure  

3 Upstream facing net on the Fish which have successfully migrated 
wetland side of the structure downstream through the structure  

4 Upstream facing net on the Fish migrating downstream towards
river side of the structure the structure      

With exceptions based on river level and the use of drop boards to retain water levels, it
is assumed that fish moving into wetlands generally swam with the flow and fish
moving out of wetlands generally swam against the flow.

Figure 3. Net numbering as per description in Table 2.

The following tests were performed in relation to each of the project objectives:

Objective 1. Determine the influence of flow rate and flood
height on movement of fish between the river and floodplain
wetlands.

Movement of fish between the river and floodplain wetlands was assessed using data
collected from nets set in the wetland inlets.  Samples used for analysis were those that
were collected moving into the wetland from the river, but not yet passing through the
wetland inlet structure (Net 4), and those that were moving towards the river from the
wetland, but not yet passing through the structure (Net 1).  By using only these two
samples, the results are not affected by the structure itself at each wetland.  Data was
assessed for normality prior to analysis.
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The effect of water quality, season and river level on fish movement
The abundance of native species as a group, introduced species as a group and all
species combined moving into and out of wetlands were used as response variables.
Flow at the nearest lock (ML/day), flow in wetland inlet (m/s) (as measured mid-stream
at 1/2 depth x 0.9), depth (cm), turbidity (secchi depth (cm)), dissolved oxygen
concentration (mg/L), temperature (oC), pH and conductivity (µs/cm) were used as
predictor variables.  River level (rising, steady, falling) and season (summer, autumn,
winter and spring) were also assessed.  The native species group, introduced species
group and combined species abundances were transformed to loge(x+1) where x is the
abundance per sample to achieve normality.  Flow at the nearest lock (ML/day) and
conductivity required loge transformation.  Flow at the sampling locations required a
transformation of loge((x+1) x 10,000) to achieve normality.

Linear stepwise multiple regressions were performed to determine the relationship
between water quality variables and fish movement into and out of wetlands.  For the
two categorical variables of river level and season, fish movement was compared by
ANOVA.

The effect of time of day on fish movement
Diel (diurnal versus nocturnal / crepuscular) movement patterns were compared for
each species using data from “night” (dusk-night-dawn) and day components of
sampling for each net.  Data from all wetland systems and habitats were pooled for
analysis.  Data was transformed using a double square-root transformation to achieve
normality.  Day and “night” samples were compared using a paired t-test analysis.

Objective 2. Identify the relative importance of channel versus
over-bank flows for fish passage into and out of wetlands.

This objective could not be addressed as only a single over-bank flow (Little Duck
Lagoon – December 2000) occurred.

Objective 3. Assess the importance of wetlands for fish
recruitment.

Fish recruitment within wetlands was assessed by comparing fish that were sampled
entering the wetland with those that were sampled moving out.  Data was pooled from
all wetlands.

Samples used for comparisons were from nets that captured fish moving into wetlands
and had already passed through the wetland inlet structure (Net 3), and fish captured
moving out of wetlands that had already passed through the wetland inlet structure
(Net 2).  These analyses are therefore representative of recruitment under current
managed wetland conditions.

Fish abundance analyses
The proportion of fish moving out of wetlands over the abundance of fish moving into
and out of wetlands was calculated for each species at each sample.  A proportion of
0.5 indicates that an equivalent number of fish are moving in both directions.
Proportions between 0.51 and one suggest that wetlands are a source of fish production
as more fish are exiting the wetland than are entering it.  Proportions between zero and
0.49 suggest that wetlands are not a source of fish production as more fish enter the
wetland than leave it.  For analysis, data was grouped by season.  
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Following an arcsine transformation for normality, 95% confidence intervals were
calculated to allow statistical comparisons of whether the proportion of fish entering
and exiting wetlands differed from 0.5 for each species during each season.

Size class data analyses
Length data for each species was analysed using Kolmogorov-Smirnov goodness–of–fit
tests.  Comparisons were only undertaken when lengths of more than 25 fish were
measured both entering and exiting the wetland.  Due to this sample size constraint,
statistical comparisons could only be made for the native species: Australian smelt, bony
bream, callop, western carp gudgeon, Midgely’s carp gudgeon (Hypseleotris sp4), Lake’s
carp gudgeon, fly-specked hardyhead (Craterocephalus stercusmuscarum) and flathead
gudgeon (Philypnodon grandiceps), and the introduced species; goldfish, carp, and
gambusia.

Data was analysed in S-Plus 2000 if less than 100 fish were measured in either group.  If
greater than 100 fish were measured in both groups, data was converted to cumulative
length frequencies and analysed as described in Sokal and Rohlf (1995).  Data was not
separated by sampling date.  It is assumed that if wetlands are significant sites for fish
recruitment, higher frequencies of small size classes would be present in the fish moving
out of wetlands. 

Objectives 4, 5 and 6. Impacts of structures, develop
guidelines, and make recommendations for their
management and construction.

The last three objectives within this project are related to the impacts of wetland flow
control structures on fish movement, and finding ways to fix them.  The three objectives
were therefore analysed and discussed together.  The original objectives are as follows:
• determine the impacts of wetland inlet structures on fish passage for native fish;
• develop guidelines to facilitate movement of native fish through inlet structures while

excluding carp;
• make recommendations for the design of new structures.

Effect of structure on movement of fish community as a whole
For each sampling occasion, relative fish passage for each species was estimated as the
proportion of individuals sampled at a structure that had successfully passed through.
Fish passage out of the wetland (FPout) was therefore (net numbers from Table 2 and
Figure 3):

FPout = Net 2/(Net 1+ Net2)

And fish passage into the wetland (FPin) was:

FPin = Net 3/(Net 3+ Net 4). 

This proportion was used rather than the simpler proportion of approaching fish that
passed through (ie FPout = Net 2 / Net 1) as, due to sampling variance, in some
instances more fish were sampled passing through than were sampled approaching the
structure, which resulted in a poorly distributed data set.  The relative fish passage index
used (RFP) is distributed between 0 and 1 with:

Values 0 Totally obstructed fish passage
Values 0.01 - 0.49 Obstructed fish passage
Values > 0.5 Effectively unobstructed fish passage. 
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Three levels of RFP were calculated for both upstream and downstream fish passage.  FP
(both US and DS) was calculated for each species for each sample.  The relative fish
passage of each sample (RFPsample) was calculated as the weighted average FP of all
species within the sample.  The relative fish passage of each structure (RFPstructure) was
then calculated as the weighted average of RFPsample at each structure when the
structure was open to allow fish passage.  Relative fish passage for individual species
(RFPspecies) was calculated as the weighted average FP for each species across samples
at each structure.  Weighted averages were used as more confidence can be placed in
FP indices calculated from larger samples.  Weighted averages and their standard error
were calculated as suggested by Sokal and Rohlf (1996).

Prior to further analysis, RFP was compared with two alternative indices, a published
index developed for assessing movement of terrestrial mammals through road under-
passes (Clevenger et al. 2001), which is equivalent to a wetland inlet structure with no
flow, and the number of fish successfully passing through structures.  RFP was
significantly correlated to both indices but had an underlying distribution more
appropriate for the intended statistical analyses and interpretation.

95% confidence intervals were calculated for RFPstructure and RFPspecies to allow
statistical analysis of whether fish passage is significantly obstructed by any of the
wetland inlet structures and which species are significantly affected.  Any case where a
RFP of < 0.5 is outside the range of the 95% confidence intervals is significantly different
from effectively un-inhibited fish passage (p < 0.05).

Due to only a single observation in winter, significance tests could not be performed for
Lake’s carp gudgeon, crimson spotted rainbowfish, redfin perch, dwarf flathead
gudgeon or gambusia during that season.  Significance tests could be carried out for all
other species at all other seasons.

As the direction of flow changed for some sampling occasions at Lake Littra, Little Duck
Lagoon, and Loveday Wetlands, data from these sites were reanalysed based on
movement with (FPDS) and against (FPUS) the flow irrespective of whether fish were
entering or exiting a wetland.

Fish community differences at different habitats
To determine if there is inherent differences in fish communities present in the different
habitats sampled, or whether the differences are due to the presence of the wetland
flow control structures, fish communities at the different habitats were compared.

Different habitats within each wetland system: wetland, inlet (wetland side), inlet (river
side) and river, and between different habitats for all wetland systems combined
(habitat is equivalent to the whole Lower Murray region) were investigated.  Data was
analysed using Analysis of Similarities (ANOSIM).  When significant differences were
found between fish communities, similarity percentages analysis (SIMPER) was
performed to identify species most responsible for the differences. 

RFPstructure for both FPUS and FPDS were correlated to the Bray-Curtis similarity
between inlet sites on either side of inlet structures for each site to determine if fish
passage efficiency at each wetland influences the dissimilarities in fish communities
either side of the wetland inlet structure.  

Effectiveness of fish screens – differences in carp abundance and biomass
The effectiveness of fish screens on wetland inlet structures at excluding carp from
floodplain wetlands was assessed by comparing carp abundances and biomass (grams)
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in wetlands and the wetland side of wetland inlets with carp abundances and biomass
on the riverine side of wetland inlets and within the river.  As different numbers of nets
were set in each habitat, data was standardised to catch per net in addition to being
standardised by set period (in hours as undertaken for all other tests).  Carp abundance
was 4th root transformed to achieve normality.  Biomass was log transformed to achieve
normality.  Data was compared using ANOVA.

Length frequency comparisons were also made of carp in wetland and riverine habitats
to identify whether wetland inlet structures effectively exclude large carp.  Length
frequency distributions were compared using Kolmogorov-Smirnov goodness-of-fit tests.

Structural characteristics affecting fish movement
The relationship between RFPsample and the structural characteristics (below) of wetland
inlet structures was assessed using weighted linear stepwise multiple regressions.  For
the categorical variables of cell type and open topped versus roofed cells, RFPsample was
compared by ANOVA.

Structural variables assessed included: depth of water within the structure (cm), flow
velocity through the structure (m/s), the height of the invert above the inlet bed (cm),
screen mesh size of fish screens (area in cm2), the width of the apron (cm), the cross-
sectional area of the culvert (cm2), the percentage cross-sectional area of inlet (%) and
openness of the structure (width x length/height: Reed and Ward 1985).  All variables
except depth and flow approached a normal distribution and were not transformed.
Both depth and flow were log transformed to achieve normality.

Behavioural investigations of carp

Civil and environmental engineering students from the University of Adelaide were
involved with this project in 2000 and 2001.

Investigations into carp behaviour and how the fish related to various types of
deterrents and flow conditions in a laboratory environment (Dooland et al. 2000,
Champion et al. 2001)

Carp deterrents investigated included responses to coarse substrate surrounding a
culvert, light/dark environments, sound, light and sound combination, bubble curtain,
and a half barrier (Dooland et al. 2000, Champion et al. 2001).

Analysis of the effect of water temperature, season and flow on fish movement through
the Lock Six fishway was also undertaken using existing fish records over a ten year
period from October 1987 to March 1997 (Dooland et al. 2000, Champion et al. 2001).

An electronic fish counter was developed and tested in the field to monitor fish
movement through culverts (Dooland et al. 2000, Champion et al. 2001). 

Methodology for these investigations can be found in the Honours thesis reports
Dooland et al. (2000) and Champion et al. (2001).

What about the fish? – Improving fish passage through wetland flow control structures in the lower River Murray

M
et

h
o

d
s

50



     

General

Sampling occurred from November 2000 – December 2002.  During the study only one
high flow event occurred, during summer 2001, when flows to South Australia reached
63,427ML/day.  Once flows from this peak receded, only two minor peaks followed at
the end of summer (16,222ML/day 10/02/01) and autumn of 2001 (24,460ML/day
06/04/01).  

Flows then generally stayed below 10,000ML/day for the remainder of the study and
never exceeded 8,000ML/day during 2002.  Despite this generality, there were four
peaks above 10,000ML/day between September and December 2001, which were
extremely short (only two days each).

The management history of each wetland is outlined below.  All temporary wetlands
were only sampled during the high river flow in spring/summer 2000-01 when water
reached these sites.  All other wetlands were sampled throughout the project period.

Overall catch information

A total of 121,190 fish were captured during the two year survey period (all sites and
wetlands combined).  These fish comprised 16 species, 11 native and five introduced
species.  The native species included three carp gudgeon species that have not as yet
been formally described, although they have been recognised by several authors (Larson
and Hoese 1996, Allen et al. 2002).  Carp/goldfish hybrids were separated from either
carp or goldfish as a separate taxon.  Table 3 indicates the total abundances of fish for
all survey sites.
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Table 3. Total fish abundances for all wetlands November 2000 – December 2002.

SPECIES LIT* WER* CHO* PIL MER LD** GUR** LOV TOTAL 

Australian smelt
(Retropinna semoni) 110 46 33 16 2594 56 67 245 3167 

Bony bream
(Nematalosa erebi) 4529 2374 82 259 615 444 329 1042 9674 

Callop
(Macquaria ambigua) 31 31 39 65 50 23 36 34 309 

Western carp gudgeon
(Hypseleotris klunzingeri) 631 829 987 4590 5754 9316 3381 8949 34437 
Midgely’s carp gudgeon

(Hypseleotris sp4) 69 364 1314 1667 1969 3181 1401 4526 14491 
Lake’s carp gudgeon

(Hypseleotris sp5) 17 65 33 136 290 583 189 919 2232 
Catfish

(Tandanus tandanus) 0 0 1 1 0 2 0 1 5 
Flathead gudgeon

(Philypnodon grandiceps) 119 42 65 1341 591 438 723 1851 5170 
Dwarf flathead gudgeon

(Philypnodon sp1) 1 6 1 35 21 44 41 28 177 
Fly-specked hardyhead

(Craterocephalus 
stercusmuscarum)  64 6 17 16 62 846 466 2714 4191 
Crimson spotted 

rainbowfish
(Melanotaenia fluviatilis) 5 94 0 1 73 108 5 22 308 

Common carp*
(Cyprinus carpio) 7032 6500 1342 14092 1890 3142 155 1797 35950 

Goldfish*
(Carassius auratus) 190 59 27 35 319 98 10 68 806 

Carp/goldfish hybrids* 5 2 0 0 6 12 2 1 28 
Gambusia*

(Gambusia holbrooki) 292 56 136 81 1580 2654 2 5391 10192 
Redfin perch*
(Perca fluviatilis) 1 3 2 2 8 6 19 12 53

TOTAL 13,096 10,477 4,079 22,337 15,822 20,953 6,826 27,600 121,190 

LIT = Lake Littra; WER = Werta Wert Lagoons; CHO = Chowilla Oxbow; PIL = Pilby Creek Lagoon; Mer = Lake Merreti; LD
= Little Duck Lagoon; GUR = Gurra Control; LOV = Loveday Wetlands.

Numbers represent actual abundances.

* Lake Littra, Werta Wert Lagoons, and Chowilla Oxbow were only sampled during high river November 2000 – January
2001.

** Little Duck Lagoon and Gurra Control shared the creek sample (adjacent wetlands), thus totals for Gurra Control do not
include fish captured in Gurra Creek (these were included into Little Duck Lagoon’s tally).

Figures 4, 5, and 6 indicate the proportional break up of the catch at all sites for the entire survey.
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Overall, introduced species comprised 38.8% of the catch, the majority being carp (n =
35,950; 29.6%).  For the native species (61.1%), the suite of gudgeon species (western
carp gudgeon, n = 34,437; Midgely’s carp gudgeon, n = 14,491; Lake’s carp gudgeon,
n = 2,232; and flathead gudgeon, n = 5,170) comprised most of the catch, totalling
46.7%, with western carp gudgeon dominating (28.4%) (Figure 4).  This is comparable
to a previous study of river systems in New South Wales, where western carp gudgeon
were also found to be the most abundant species (Gehrke and Harris 2000).

Figure 4. Contribution of all species to total catch.

The remaining catch included gambusia (n = 10,192; 8.4%), bony bream (n = 9,674;
7.9%), fly-specked hardyhead (n = 4,191; 3.4%), and Australian smelt (n = 3,167;
2.6%).  Goldfish only comprised 0.66% of the total catch (n = 806), with callop
(n = 309), crimson spotted rainbowfish (n = 308), dwarf flathead gudgeon (n = 177),
redfin perch (n = 53), hybrid carp/goldfish (n = 28), and catfish (n = 5) all contributing
less than 0.3% of the total catch at all sites over all dates.

When the catch is broken into large and small species (size at maturity), the large
species within the catch remain dominated by carp (76.7%) – Figure 5.  Bony bream
comprise 20.66% of the catch of large fish species, with goldfish contributing 1.72%
and callop only 0.65%.  Catfish, redfin perch and carp/goldfish hybrids contributed less
than 0.18% of the total catch of large species throughout the survey.

Figure 5. Contribution to catch of all large species (size at maturity).
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Of the small fish species, the catch was dominated by western carp gudgeon (46.3%),
and Midgely’s carp gudgeon (19.4%).  The introduced gambusia comprised 13.7% of
the catch of small species, with flathead gudgeon, fly-specked hardyhead, Australian
smelt and Lake’s carp gudgeon contributing 6.9%, 5.6%, 4.2%, and 3.0% crimson
spotted rainbowfish of the catch respectively.  The two remaining small fish species
(crimson spotted rainbowfish and dwarf flathead gudgeon) contributed less than 0.5%
to the small species catch (Figure 6).

Figure 6. Contribution to catch of all small species (size at maturity).

The proportion of introduced species collected during the present study were lower
than those found in the New South Wales “Fish and Rivers in Stress” survey, which
found that within the “Murray, regulated lowland” 64.8% of the catch (n = 711)
comprised introduced species (Harris and Gehrke 1997).  All introduced species
captured during the present study were also captured by Harris and Gehrke (1997),
with the exception of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo
trutta).  As with this study, the most abundant introduced species was found to be carp
(n = 324), followed by redfin perch (n = 53) and goldfish (n = 37).  In comparison to
this study, only one specimen of gambusia was collected by Harris and Gehrke (1997)
during their entire study within the “Murray, regulated lowland”.  This is most likely as a
result of Harris and Gehrke’s study sampling only riverine environments, whereas this
study sampled both river and wetland habitats: gambusia are known to prefer warm,
gently flowing or still waters, particularly near the edges of aquatic vegetation beds
(McDowall 1996b, Allen et al. 2002).

Despite these overall similarities, within this study different wetlands were observed to
have significantly different fish communities.  These findings were analysed further to
determine the reason for the differences, with the results discussed below under
Objective 4.

Fish tag program

A total of 304 fish were tagged from April 2001 to December 2002.  Most of the
tagged fish were carp (n = 188), ranging in size from 165mm to >640mm.  In addition
74 callop, 32 goldfish, and eight redfin perch were tagged during the course of normal
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sampling.  Two adult silver perch (Bidyanus bidyanus) were also tagged, although these
fish were captured in an illegally set drum net in Ral Ral Creek.  Table 4 indicates the
number and size range of fish tagged.

Table 4. Number of fish tagged April 2001 – December 2002.

165mm – 350mm 350mm – 500mm >500mm TOTAL 
Carp 129 30 29 188
Goldfish 30 2 0 32 
Redfin perch 8 0 0 8 
Callop 59 15 0 74 
Silver Perch 2 0 0 2 
TOTAL 228 47 29 304

Although the number of fish tagged was quite low, there were eight fish recaptured
during the study.  Of these, most were callop (five), with the three other fish being two
redfin perch, and a single carp (Table 5). 

Table 5. Movements of recaptured tagged fish. 

The longest time period between tagging and recapture was 27 months for a carp.  In
this time, the fish had grown approximately seven centimetres in length.  The second
longest time period between tagging and recapture was nine months (also a carp).
Callop were recaptured six, five and three months, and two weeks after initially being
tagged, and two redfin perch were both recaptured one month after being tagged.
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Species Tag Tag site Recapture site Date of  Date of  Time  Distance  
tagging recapture away between

sites 

Callop 17 Pilby inlet  Pilby inlet 21-04-01 27-07-01 3 months ~10m 
(river side) (river side)

Callop 191 Ral Ral Ck  Ral Ral Ck  25-04-01 11-10-02 5 months ~100m 
(adjacent (adjacent 

perm inlet) perm inlet)
Callop 507 Gurra Creek Mainstream  26-04-01 11-05-01 2 weeks ~1.4km 

adjacent 
Gurra Creek

Callop 508 Loveday inlet  Moorook Game  01-05-01 21-10-01 6 months ~1km 
(river side) Reserve

Callop 550 Gurra Control  Mouth of 30-04-02 30-07-02 3 months ~300m 
(wetland) Gurra Creek

Redfin 134 Loveday (river) Loveday (river) 30-11-01 21-12-01 1 month ~0m 
perch 
Redfin 155 Loveday (river) Loveday (river) 21-12-01 18-01-02 1 month ~0m 
perch
Carp 96 Ral Ral Ck  Chowilla    15-11-01 08-08-02 9 months ~9-11km 

(adjacent mainstream
Merreti middle adjacent

inlet) 608km mark
Carp 531 Pilby (river) Chowilla 10-12-01 04-05-03 2 years,  ~2km 

mainstream 3 months
adjacent 

393 mile mark



Nearly all the fish were recaptured either at, or close to their initial release site, moving
from one side of the river to the other (callop at Loveday), from Gurra Creek to the
adjacent mainstream (callop), recaptured in exactly the same position as they were
released (callop at Pilby Lagoon inlet channel (river side), redfin perch at Loveday
mainstream channel), or making a small upstream movement (approximately 2km for
carp 531).  The exception to this was the carp (tag 91), which moved between 9-11km
upstream (depending on the route taken) between being tagged and recaptured.  This
fish could have moved upstream wholly via the anabranch system of Ral Ral Creek, Big
Hunchee Creek to its recapture location (nine kilometres), or via the mainstream river
channel for part of the distance (via Ral Ral Creek, Big Hunchee Creek, Little Hunchee
Creek, mainstream river channel).

Few conclusions can be drawn from this information due to the low recapture rate.
However, it is interesting to note that the only species that moved some distance from
its release site was a carp.  It is possible that both callop and redfin perch have a high
site fidelity during times of low flow.  High site fidelity for callop has recently been
reported for both callop and carp (Stuart and Jones 2002, O’Connor et al. 2003), and
previous tagging studies have shown that callop can move large distances during high
river flows (Reynolds 1983).  

Although no further tagging will be undertaken as part of this project, it is hoped that
other tags will be returned over time, providing some useful information about fish
movements, especially during high flow periods.

Turtle captures & distribution

Three species of freshwater turtle are found in the Murray-Darling basin: the long-neck
turtle (Chelodina longicollis), short-neck turtle (Emydura maquarii), and the broad-shell
turtle (Chelodina expansa).  All three species were captured as “by-catch” during this
study.

The most common species captured was the long-neck turtle (n = 759), which was
captured at all sites, either in the wetland, inlet channel, or river/feeder creek
(anabranch).  The next most common species was the short-neck turtle (n = 20) that
were caught at Lake Merreti (one animal at the inlet structure), Gurra Control Wetland
(n = 4), Little Duck Lagoon (n = 2), and Loveday Wetlands and its inlet channel (n =
10).

Only seven broad-shell turtles were captured for the entire survey, mostly in the first
year.  Broad-shell turtles were captured at Chowilla Oxbow Wetland (n = 1), Lake Littra
Punkah Creek (n = 2), Werta Wert Lagoons Monoman Creek (n = 1), Gurra Control
Wetland (n = 1), Little Duck Lagoon (n = 1), and in the mainstream river at Loveday
Wetlands (one individual that was recaptured during both the day sample and the dusk-
night-dawn sample of the same date).  

The low numbers of broad-shelled and short-neck turtles captured during this study is of
concern.  Broad-shell turtles can be found in permanent streams and wetlands although
they prefer the riverine environment, whilst short-neck turtles are essentially a riverine
species (Cogger 2000).  As a result of river regulation, the riverine environment has
changed from a flood-drought system, to one with little variation in the hydrograph in
the small – medium flood range.  It is possible that these species are becoming limited
in their distribution to small isolated or semi-isolated populations throughout their range
in South Australia in a similar manner to other riverine species that are essentially
riverine species.  Species such as the River Murray crayfish (Euastacus armatus) and the
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river mussel (Alathyria jacksoni) have either become extinct in South Australia or
restricted in their range as a direct result of river regulation, and the creation of
conditions more suited to wetland species such as yabbies (Cherax destructor), wetland
mussels (Velesunio ambiguus) (Walker 1990), and the long-neck turtle.  It is also likely
that predation has had an effect on these species (discussed below).

Long-neck turtles were collected at all sites throughout the study except the mainstream
channel adjacent Pilby Creek Lagoon, Monoman Creek, and the inlet channel on the
wetland side of the structure at Lake Littra.  Figure 7 indicates long-neck turtle
abundance at all wetlands.

Figure 7. Long-neck turtle abundance at all wetlands.

The wetland with the most long-neck turtles captured was Little Duck Lagoon
(n = 390), with all other wetlands connected at pool ranging in captures from 54 (Gurra
Control) to 120 (Pilby Creek Lagoon).  All temporary wetlands in this study showed
minimal captures (nine, 10 and 12 for Werta Wert, Lake Littra and Chowilla Oxbow
respectively).  This may be a result of the time spent sampling at these wetlands, the
short duration of inundation, that long-neck turtles are not common in temporary
wetlands, or that they have been favoured by river regulation and prefer wetlands that
are wet more often (connected at pool level).

Long-neck turtles prefer the wetland environment or slow moving rivers (Cogger 2000).
It is therefore no surprise that for most wetlands (except Lake Littra), a greater number
of animals were captured in the wetlands themselves compared to the river/feeder creek
(Figure 8).  In all wetlands (except Pilby Creek Lagoon) that are connected to the river
at pool level, there was a gradual decline in numbers from the wetland to the inlet
channel either side of the flow control structure to the river/feeder creek.  For Pilby
Creek Lagoon, Werta Wert Lagoons and Lake Littra, more turtles were captured in the
inlet channel on the creek side of the structure compared to the wetland side of the
inlet channel or the river/feeder creek.  No long-neck turtles were collected in the inlet
channel to Chowilla Oxbow, although eight were captured in the wetland and four in
Chowilla Creek.
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Figure 8. Long-neck turtle abundance by site at each wetland.

Predation (signs of damage to shell or body)
Turtles are particularly vulnerable to predation or attack when laying eggs or
undertaking overland movements to new wetlands and waterways.  Short and long-
neck turtles lay their eggs adjacent to their wetland, however broad-shell turtles lay
them further away (Cogger 2000).  It would therefore be expected that broad-shell
turtles would be exposed to a greater risk of predation due to the distances they move
before finding an appropriate nest site.  However, long-neck turtles have been observed
making overland movements (Nichols, pers. obs. 2002), therefore this species is also
exposed to a greater risk of predation from terrestrial predators.

Figure 9 indicates the proportion of long-neck turtles captured at each wetland that
showed signs of damage to their shell or body.  Damage recorded included small pieces
removed from the edge of the carapace, holes in the shell, large sections of shell
removed, damage, loss of eyes, limbs and claws.  No broad-shell or short-neck turtles
captured showed signs of damage, although predation from foxes, cats, pigs and dogs
has been implicated for the sharp decline in the abundance of short-neck turtles (Hoser
1989), and is likely to also have an effect on broad-shell turtles. 

Figure 9. Proportion of long-neck turtles at each wetland with damage to either
their shell or body.
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Figure 9 demonstrates that at two of the three temporary wetlands (Chowilla Oxbow
and Lake Littra), no long-neck turtles captured were recorded with damage to their shell
or body.  Both these wetlands had very low capture rates (12 and 10 individuals
respectively), however the third temporary wetland, Werta Wert Lagoons (which only
had nine individuals captured), showed 11.1% of individuals with predation damage.

Of the permanently connected wetlands, Little Duck Lagoon showed the greatest signs
of predation (24.87%), with Gurra Control Wetland and Loveday Wetlands being
around 10%, Pilby Creek Lagoon at 6.6%, and Lake Merreti at 3.75%.  The large
proportion of animals attacked at Little Duck Lagoon is a concern, as this wetland seems
to be a stronghold for this species.

It is interesting to note the low amount of predation effects observed on long-neck
turtles at Lake Merreti.  Only three out of 80 captures (<4%) showed signs of predation
effects at Lake Merreti.  This wetland is the only one within the study that has a regular
(monthly) fox baiting program undertaken on the surrounding floodplain.  It is thought
that, although there were some predation effects, these has been minimised as a result
of the fox baiting program.

When divided into sites within the wetlands (Figure 10), turtles with damage to their
bodies or shells were more prevalent in the wetland at Werta Wert Lagoon, Pilby Creek
Lagoon and Little Duck Lagoon.  At Lake Merreti and Loveday Wetlands, more animals
were affected in the inlet channels than elsewhere, and at Gurra Control, more animals
from Gurra Gurra Creek showed scars than in the wetland or “inlet channel”. 

Figure 10. Proportion of long-neck turtles with damage to either their shell or
body at each site within each wetland.

No analysis of size measurements was undertaken for turtles.
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Addressing project objectives:

Objective 1. Determine the influence of flow rate and flood
height on movement of fish between the river and floodplain
wetlands.

Permanent wetlands may have permanent localised fish communities that do not
undergo immigration or emigration (Humphries et al. 1999).  Examples of species
commonly found in permanent wetlands include gudgeons, crimson spotted
rainbowfish, Australian smelt (Humphries et al. 1999), and gambusia (Wedderburn
2001).  Western carp gudgeons have been recorded having a strong association with
snags and aquatic plants, and are most often found in wetland environments
(Wedderburn 2001).  Similarly, some fish are riverine specialists, preferring to remain
within mainstream habitats (eg Murray cod, Maccullochella peelii: Harris and Rowland
1996).  Australian smelt have been associated with flowing waters and high turbidity
(Wedderburn 2001).  In addition to species that are either riverine or wetland specialists,
there are a number of species that move between rivers and wetlands to some extent,
termed lateral migration.  For example, although bony bream are known to prefer
backwaters and wetlands over mainstream habitats, they move between the two
habitats, and have been recorded spawning in backwaters during floods, although it has
been noted that only juveniles use the floodplain proper (Humphries et al. 1999).  In
the Czech Republic, roach and redfin perch were found to move laterally between
backwaters and the mainstream (Hohausova 2000).

Movement into wetlands

When examining the fish community as a whole, the water quality variables
predominantly responsible for triggering fish movement from the river into floodplain
wetlands were temperature and conductivity (F2,58 = 20.1, p <0.0001) (Table 6).  These
two variables accounted for 40.94% of the variation in fish movement into wetlands,
with fish moving into wetlands when water temperature and conductivity were
increasing.

For native fish water temperature and conductivity, as well as flow within the wetland
inlet contributed to trigger movement into wetlands.  Temperature and conductivity
were significantly related to fish movement and, although flow within the inlet channel
was not significant individually, it contributed to improving the explanatory power of
the model (F3,57 = 13.21, p <0.0001) (Table 6).  These three variables accounted for
41.01% of the variation in movement of native fish into wetlands.  When the
relationship between fish movement, water quality, and environmental parameters is
explored, it can be seen that native fish moved into floodplain wetlands when water
temperature and conductivity increased, and flow within wetland inlets declined.

Although significant (F4,56 = 6.60, p = 0.0002), the relationship between water quality
and flow variables and the movement of introduced fish into floodplain wetlands was
not as strong as for native fish.  For introduced fish species, a combination of
conductivity, temperature, turbidity and flow within the inlet channel accounted for
32.05% of the variation of movement of fish into wetlands.  Conductivity, temperature
and turbidity were significantly related to fish movement, with flow within the inlet
channel adding to the explanatory power of the model (Table 6).  The direction of this
relationship appears such that introduced fish moved into floodplain wetlands when
conductivity, temperature and flow within wetland inlets increased and turbidity
declined.
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River flow at the closest lock, river level, depth in the inlet channel, dissolved oxygen,
pH and season were not found to affect fish movement into wetlands during this study. 

Increasing conductivity and temperature were both found to be very important triggers
for fish movement into floodplain wetlands.  Flow within the inlet channel was also
important for initiating movement of both introduced and native fish, although natives
were stimulated to move by decreasing flow while introduced fish were stimulated by
increasing flow. 

Table 6. Results of stepwise multiple linear regressions of movement of fish
between floodplain wetlands and the river for native, introduced, and all fish
species.

Movement out of wetlands

Unlike the movement of fish into floodplain wetlands, no water quality or environmental
variables were found to be significantly associated with the movement of the entire fish
community out of wetlands (F1,59 = 2.91, p = 0.093) (Table 6). 

When introduced species were omitted, however, flow at the nearest lock and turbidity
of the water were found to be significantly associated with movement of native fish out
of wetlands (F2,58 = 3.50, p = 0.037) (Table 6).  Despite this association the relationship
was weak, with these two variables accounting for only 10.77% of the variation in fish
movement out of wetlands.  In addition, neither variable was significantly related on
their own but the combination of both provided a significant model.

No environmental or water quality variables were found that were significantly
associated with the movement of introduced species out of wetlands (F1,59 = 3.10, p =
0.083).

Synopsis
It should initially be clarified that the data analysed here were pooled to form groups of
fish, rather than being analysed on an individual species basis due to the sample sizes
for individual species being small in the area of interest (inlet channel either side of the
flow control structure).  Similarly, no distinction has been made for life stage
information, which potentially may have influenced the results.
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Movement into wetlands Movement out of wetlands

Variable Regression ± SE P   Variable Regression  ± SE P
coefficient coefficient

Natives Natives 
Temperature 0.064 0.014 <0.0001   Flow at closest lock  -0.151 0.096 0.122  
Conductivity 0.717 0.137 <0.0001   Turbidity (Secchi) -0.013 0.007 0.051  
Flow in wetland inlet -3.353 1.72 0.056   

Introduced fish Introduced fish 
Conductivity 0.396 0.106 0.0004   No significant relationships  
Temperature 0.035 0.012 0.006        
Turbidity (Secchi) 0.013 0.006 0.045        
Flow in wetland inlet 2.424 1.289 0.065  

Total Total 
Conductivity 0.817 0.147 <0.0001   No significant relationships  
Temperature 0.060 0.015 0.0002   



The specific relationship between water quality, environmental variables and fish
movement is difficult to determine.  From the relatively low explanatory power of the
variables measured, it would appear that other variables not recorded are also factoring
in the inducement of fish to move either into or out of wetlands, or that the groups of
fish chosen are inappropriate (individual species may be acting differently, dampening
any overall relationship between fish movement and water quality or environmental
variables).  Despite this, several hypotheses can be proposed to explain the relationships
observed. 

Increases in flow in the mainstream channel have been recorded as being associated
with fish migration upstream for breeding purposes (Reynolds 1983).  Flow in wetland
inlet channels would therefore also be thought to influence movement as this is also
naturally associated with mainstream flow increases.  During the initial stages of wetland
filling, water velocities within the inlet channel would increase, possibly giving an
indication to fish that new foraging or breeding areas were opening up.  This appears to
have occurred during this study for the introduced species, combining with other water
quality variables to stimulate movement into wetlands. 

As part of this project, a small pilot study investigated fish movement when an
attractant flow was initiated at Pilby Creek Lagoon prior to a drying cycle being
implemented on the wetland (Nichols 2001).  Although no statistical tests were
possible, fish activity in both the inlet and outlet was noted to increase with application
of an attractant flow from the inlet and opening of the outlet structure – indicating that
changes to flow is may be an important factor in stimulating fish movement (Nichols
2001).

Fish moving into wetlands with decreasing flow in their inlets is a little more difficult to
explain.  It is possible that native fish have adapted to move into wetlands when flow in
their inlets decreases as an indication that a wetland is full and therefore the maximum
area has been opened up for foraging, breeding, or rearing.  This, in combination with
other variables may indicate that the wetland is “safe” or “ready”.

Flow, in combination with increasing salinity and water temperatures appears to
stimulate both native and introduced fish to move into wetlands.  Increasing water
temperatures in the mainstream are a function of season, with higher water
temperatures occurring in summer, and lower temperatures in winter.  The natural
hydrological cycle prior to river regulation was high river flows occurring in spring-early
summer, coinciding with rising water temperatures.  In wetlands increasing water
temperatures are also a function of seasonality, but also of water depth (shallow water
heating more than deeper water), and may indicate that a newly opened area has been
created.

Analysis of fish captures from Lock and Weir Six fishway by Dooland et al. (2000)
indicated that movement of callop and silver perch upstream through the fishway were
strongly associated with water temperature and time of year with slightly more
movement occurring with rising water levels.  Activity was noted to begin at around
16°C, with most activity occurring in January and February when water temperatures
were around 23-24°C, and continuing until temperatures were falling below 19°C
(Dooland et al. 2000).  In contrast, movement of carp through the fishway occurred
earlier (starting in August or September), peaking in October or November, with less
movement occurring in summer (December to February) (Dooland et al. 2000).  In
addition, carp did not appear to be stimulated by a specific water temperatures,
although did not move through the fishway when temperatures were below 14-15°C.
when their movement peaked when there was very little pool level differences (Dooland
et al. 2000).
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Similarly, increasing conductivity could also indicate suitable habitat for fish within
floodplain wetlands.  Where saline ground-water levels were low, water on the
floodplain is likely to be absorbed by the soil quicker and therefore floodplain wetlands
would empty/dry more rapidly.  Conversely, if the saline ground-water table was high,
floodplain waters would remain for longer periods of time.  As a result, the level of the
ground-water table could act as an important predictor of the suitability of floodplain
wetlands for fish habitat.  Under this hypothesis, if the level of the ground-water table is
reflected by conductivity level within the river, riverine conductivities may have evolved
as an indicator to riverine fish populations that floodplain wetlands are likely to persist
for sufficient periods of time to act as suitable fish habitat.

It is surprising that changes in dissolved oxygen levels were not significantly correlated
with fish movement, as this is taken to be one of the main water quality parameters that
influence fish distribution in the river and on the floodplain (Welcomme 1985).  Gehrke
(1991) found a positive correlation between callop larval density and dissolved oxygen
concentrations in an artificially inundated floodplain habitat and pond environment
(Gehrke 1991).  In his experiment Gehrke found that higher densities of larvae were
found in the pond environment compared to the newly inundated floodplain habitat
where low dissolved oxygen concentrations occurred (Gehrke 1991).  This was despite
the presence of higher densities of food items on the floodplain compared to the pond
habitat.  Low dissolved oxygen concentrations were attributed to the breakdown of
plant matter on the floodplain, and could not be separated from the effects of tannins
also released from rotting vegetation (Gehrke 1991).  Gehrke (1991) therefore
hypothesised that water quality parameters such as dissolved oxygen and tannin
concentrations exerted a greater influence on the distribution of callop larvae than did
food density in an artificially inundated floodplain environment (Gehrke 1991).  The
same may be true for other species, and probably of more mature life stages of callop.
For older age classes, however, the ability to avoid poor conditions is greater than for
the larvae due to their swimming ability, with poor water quality areas potentially still
available for feeding, but within a shorter time frame.

The poorer relationship between introduced fish and the parameters measured possibly
should be expected due to the short time frame in which these animals have been
present in this system.  Associations with environmental and water quality parameters
are built up over evolutionary time-scales, and would not be expected to be evident in
species that are relatively new to an environment.

The lack of water quality and environmental variables associated with fish moving out of
floodplain wetlands indicate that other factors are stimulating movement out of
wetlands for native and introduced fish, and for the fish community as a whole.  The
absence of these cues (whatever they are) could lead to fish strandings.

Diel patterns of fish movement in the Lower Murray

Significant differences in the capture rate during day and “night” samples occurred for
12 of the 16 species sampled for this project (Table 7).  For three of these species
(catfish, goldfish/carp hybrids, and redfin perch), the sample sizes were low (n = 5, 28,
53 respectively), however the other species that did not show a significant correlation
with either activity time, bony bream, were found in high abundances (n = 9,674).

Only three species were significantly more active during the “night” sample: goldfish,
carp, and callop.  All other species were found to be more active during the day than
“night” samples, indicating the diurnal nature of their activity.
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The significance levels were generally lower for the ‘inlet only’ analyses due to the
smaller sample sizes.  No contradictory results were found between the two analyses
although some species that showed significant differences when the whole data set was
analysed, were not significant with the reduced data set.

Table 7. Results of Wilcoxon’s signed-ranks tests comparing fish catches during day
and “night” samples. 

Species p value p value Active period
(all habitats)  (inlet channels 

only)  

Native species  
Fly-specked hardyhead <0.02 >0.1 Diurnal  
Western carp gudgeon <0.001 <0.001 Diurnal  
Midgely’s carp gudgeon <0.001 <0.01 Diurnal  
Lake’s carp gudgeon <0.001 <0.001 Diurnal  
Callop <0.001 <0.001 Nocturnal / Crepuscular  
Crimson spotted rainbowfish <0.01 >0.5 Diurnal  
Bony bream >0.5 >0.5   
Flathead gudgeon <0.001 <0.001 Diurnal  
Dwarf flathead gudgeon <0.01 >0.5 Diurnal  
Australian smelt <0.001 >0.1 Diurnal  
Catfish >0.5         

Introduced species 
Goldfish  <0.001 <0.001 Nocturnal / Crepuscular  
Carp <0.001 <0.001 Nocturnal / Crepuscular  
Goldfish/carp hybrids >0.2 >0.5   
Gambusia <0.001 <0.001 Diurnal  
Redfin perch >0.1 >0.2   

Synopsis
Although bony bream were not found to be more active during either the day or
“night” samples during this study, sampling in the Cooper Creek system has indicated
that this species is crepuscular in its activity, ie the time of greatest activity occurs at
dusk and dawn, rather than day or night (Pritchard pers. comm. 2002).  Conversely, a
preliminary survey of fish movements in Chowilla wetlands found that bony bream
moved exclusively during the day (Pierce 1992).  More directed sampling of this
species, during day, night, dusk, and dawn periods will determine the period of greatest
activity for this species.

As with bony bream, it has previously been noted that callop are also crepuscular in
their activity (Mallen-Cooper 1992, Mallen-Cooper 1994), although one study has
indicated that they are diurnal (Pierce 1992).  Crepuscular activity, rather than purely
nocturnal activity would explain the significant correlation with the “night” samples of
this project, as “night” samples included dusk, night and dawn periods.  The same,
therefore, could also be true of carp and goldfish which also showed greater activity
during the “night” samples of this study.  However, Pierce (1992) found that carp and
goldfish moved out of Chowilla (temporary) wetlands exclusively at night, indicating
that they are genuinely nocturnal in their activity (Pierce 1992).

The non-significant relationship of those species not related to either the day or “night”
samples may be due to the pooling of data from all life stages collected during this
project.  Different life stages may have different activity periods within a 24hour period,
leading to a non-significant relationship between fish activity and day, “night” samples.

What about the fish? – Improving fish passage through wetland flow control structures in the lower River Murray

R
es

u
lt

s 
a

n
d

 D
is

cu
ss

io
n

64



It may also be due to the low sample sizes for some species (catfish, carp/goldfish
hybrids, and redfin perch).

The findings of this study that the gudgeon species and fly-specked hardyheads are
diurnal in their activity concur with a previous study of fish movement in the Chowilla
wetlands (Pierce 1992).

Determination that some species, particularly the introduced species, are nocturnal or
crepuscular in their activity provides opportunity for flow control structure management
at rehabilitated wetlands.  Closure of the fish screens at night, and opening them during
the day, may provide native fish access to the wetlands during the day, and limit the
number of carp and goldfish accessing the wetlands at night.  The finding that callop
are also nocturnal or crepuscular in their movements may not be an inherent dilemma
for structure management, as only 35.3% of all callop (n = 311) were captured within
the wetland environment (managed or unmanaged).  Of those fish on the wetland side
of the structure, only 34.5% were greater than 200mm (n = 38) compared to 56.7% of
callop on the river side of the structure (n = 114), indicating that adult fish are not
using the wetlands in high numbers.

The potential use of wetlands as breeding areas is discussed further in Objective 3.

Objective 2. Identify the relative importance of channel versus
over-bank flows for fish passage into and out of wetlands.

This objective could not be addressed as only one over-bank flow occurred in December
2000 at Little Duck Lagoon, when the structure embankment was overtopped.  Despite
the lack of overbank flows, the temporary inlets to Lake Merreti began to hold water
during October – December 2000, and provided an opportunity to undertake sampling
at the upstream inlet site in October.  

Lake Merreti upstream inlets

Sampling was focussed on the inlet structure net due to timing and resourcing issues,
although nets were set in the inlet channel on the creek side of the structure and in the
adjacent Ral Ral Creek (two nets only).  No nets were set on the wetland side of the
structure, and the structure net was only set for movement into the inlet channel.  No
formal statistical analysis was possible due to the low number of samples taken, and
individuals captured.

Overall, three samples were taken with the structure net, inlet channel, and Ral Ral
Creek.  A total of 361 fish were captured from nine species in the upstream temporary
inlet and inlet structure net, and six species from Ral Ral Creek.  Only three species were
captured using the inlet structure net (25mm bar length): carp (n = 37), goldfish
(n = 30), and bony bream (n = 1).

The most common species captured overall were carp (n = 184), goldfish (n = 70), and
western carp gudgeons (n = 70), with the majority of these being captured within the
inlet channel.  Midgely’s carp gudgeon (n = 20) were the next most common species,
again predominantly captured in the inlet channel itself.  All other species captured
consisted of less than ten individuals (flathead gudgeon, n = 6; Australian smelt, n = 3;
bony bream, n = 3; hybrid carp/goldfish, n = 2; callop, n = 1; gambusia, n=1; redfin
perch, n = 1).  Callop and flathead gudgeon were only found in the creek sample.
Australian smelt, Midgely’s carp gudgeon, gambusia, and redfin perch were only
captured in the inlet channel nets (the redfin perch was a juvenile ~35mm long).
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Sampling in October 2000 coincided with the main carp breeding event that occurs at
around this time annually (Hume et al. 1983, Smith 1999).  Environmental cues such as
rising air and water temperatures, increased flows, water height, and photoperiod
appear to trigger reproductive activity at this time (Smith 1999).  Carp were observed in
the shallow water of sections of inundated floodplain at the time of sampling (Nichols
pers. obs. 2000).

The initial sample predominantly captured carp and goldfish greater than 200mm in
caudal length, although some smaller individuals of goldfish were also captured within
the inlet channel at this time (Figure 11 and 12).  During the following two sample
events, the size classes dropped so that the catch was predominantly composed of carp
within the 10-20mm and 20-50mm size class.  Carp approximately 40mm in length are
generally around 50 days old (Smith 1999).  With this age estimate, fish in the 0-30mm
size class appearing during these samples were probably spawned within the month
prior to sampling.  

Goldfish catches on the later dates remained dominated by 100-200mm fish, with lesser
contributions from fish between 50-100mm and 200-300mm.  This indicates that
spawning for this species is likely to be earlier or later than for the carp.

Synopsis
Previous studies have indicated that fish became more abundant after flooding, when
creek and floodplain habitats contained water (Gehrke et al. 1995).  Diversity has also
been noted to increase at these times (Theiling et al. 1999, Medeiros and Maltchik
2001), with the absence of flooding (through lack of natural flows) leading to a more
stable, and less diverse fish fauna (Medeiros and Maltchik 2001).

Figure 11. Carp abundance by site and date at Merreti upstream temporary inlet.
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Figure 12. Goldfish abundance by site and date at Merreti upstream temporary
inlet.

In Australia, the “flood pulse concept” has been applied to describe the link between
flooding, fish reproductive activity and recruitment (Junk et al. 1989).  However, little
field evidence has been provided to indicate that all fish native to the Murray-Darling
basin fit this model, leading to the development of alternative theories on reproductive
traits employed (Humphries et al. 1999).  Indeed, previous studies have shown that it is
predominantly juvenile carp that have been found in large numbers in floodplain lake
(temporary wetland) habitat (Gehrke et al. 1995).

During this survey, carp were found to be the dominant fish at all three temporary
wetlands monitored.  This was also the case during a previous fish survey at Lake Littra,
where a total of only four species were captured using three capture methods: carp,
gambusia, Australian smelt, and callop (one adult individual only) (Dominelli 1996).

Although it is known that other species do use the floodplain during high floods, it is
thought to be only for short periods of time (Koehn and Nicol 1998).  As Humphries et
al. (1999) remark, more directed research is required to investigate the use of temporary
wetlands and the floodplain proper by fish during high river and overbank flows.

Objective 3. Assess the importance of wetlands for fish
recruitment.

Despite the popular belief that the floodplain and its wetlands are important areas for
fish recruitment (eg Cadwallader 1978), and knowledge that some species prefer
permanent wetland habitats (Humphries et al. 1999), for most species little evidence has
been found to support the use of wetland as spawning and recruitment sites (Geddes
and Puckridge 1989).

The “flood pulse concept”, originally proposed by Junk et al. (1989), has been used to
describe the integral part flooding flows play in the biology of native fish species.  More
recently, the notion that all native fish species rely on flooding flows to complete their
life cycle has been challenged (Humphries et al. 1999).  This has led to the proposal of
alternative reproductive strategies such as the “low flow hypothesis”, which suggests
that some fish species reproduce and recruit within the main river channel, and are not
reliant on flooding flows to complete their life cycles (Humphries et al. 1999).  In
addition, some authors have suggested that floodplain wetlands are not used as
spawning sites for many species, but act as grow-out (nursery) areas for juveniles
(Geddes and Puckridge 1989).
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Abundance data
Analysis of abundance data from the current study has shown that none of the wetlands
surveyed were a significant source of recruitment for any species during any season.  In
fact, several species were found to have significantly more individuals entering wetlands
than leaving them, suggesting that the wetlands were acting as a population sink for
these fish (Figure 13).  

Of the introduced species, significantly more carp entered wetlands than left in summer,
and significantly more gambusia entered wetlands than left in autumn and spring.
Significantly more redfin perch entered wetlands than left them in autumn.  The use of
wetlands by redfin perch was minimal, however, (low numbers were collected
throughout; generally only single individuals from the wetland or inlet on the wetland
side of the structure, except Gurra Control wetland where a total of 16 juvenile and one
adult fish were captured from the wetland during the entire project).

Of the native species, significantly more western carp gudgeon entered wetlands than
left them in summer, autumn and winter; significantly more Lake’s carp gudgeon
entered wetlands than left in spring; significantly more crimson spotted rainbowfish
entered wetlands than left in autumn and spring; and significantly more Australian smelt
entered wetlands than left in winter.

Size class data
The results based on abundance data are supported by analyses of length data (Figure
14).  The assumption with this analysis is that if a wetland was acting as a site of
significant recruitment, it would be expected that a greater number of smaller
individuals would be sampled moving out of a wetland than moving into it.  Size class
data was only analysed for species with greater than or equal to 25 individuals entering
and leaving the wetland, therefore analyses were not undertaken for crimson spotted
rainbowfish, dwarf flathead gudgeon, catfish, or redfin perch.

For the fish that were analysed, four species (Australian smelt, bony bream, callop and
goldfish), showed a significantly higher frequency of small size classes moving into
wetlands, with larger size classes moving out.  For these species at least the wetlands
sampled may be acting as a grow-out (nursery) area, where juvenile individuals (and
possibly larvae) move into the wetlands, grow, and move back to the mainstream.

For two of the introduced species (carp and gambusia), the significant differences in size
frequency distributions were due to differences in the number or fish present within the
intermediate size classes.  Significant differences in size frequency distributions in the
direction expected if wetlands were a significant site of recruitment (greater number of
smaller individuals leaving than entering the wetlands) were only found for Midgely’s
carp gudgeon and Lake’s carp gudgeon.  No significant differences in size frequency
distributions were found for western carp gudgeon, fly-specked hardyhead or flathead
gudgeon.

The non-significant result for western carp gudgeon, fly-specked hardyhead and
flathead gudgeon may be a result of a sampling effect produced by the fyke nets used.
These nets were inefficient at capturing fish less than 15-20 mm (having a mesh bar
length of five millimetres) and therefore were not capable of capturing the small size
classes of any of the small fish species.  Small individuals of Midgely’s and Lake’s carp
gudgeons were greater than 20mm length, and the size classes for both species
overlapped those for western carp gudgeon, fly-specked hardyhead and flathead
gudgeon.  For these species therefore, the wetlands sampled may still be acting as a
grow-out (nursery) area, with small fish (including larvae) moving in and juveniles
moving out, but that the size frequency for fish leaving is less than for other species.
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Synopsis
Data from all wetlands within this study were pooled to undertake the analyses using
abundance data, and size frequency data.  Data used for all analyses were from nets
capturing fish that had moved through the structure in either direction (Nets 2 and 3).
The results are therefore reflective of current wetland management conditions, where
flow control structures are present on six of the eight wetlands surveyed.  Results should
therefore be qualified with the potential impact the flow control structure is having on
juvenile fish movement to and from the wetland (refer Objectives 4-6).

In addition, due to the type of gear employed during the project, sampling of larval fish
was not possible.  Complete comment on the use of these wetlands as spawning sites
therefore cannot be made.  Further research on larval fish movement to and from
wetlands with and without flow control structures would be advantageous for future
management of these wetlands and their larval fish fauna.

Geddes and Puckridge (1989) agreed with other authors who believe the floodplain
habitat to be important as a fish nursery.  Further, they suggested that the floodplain
and its wetlands may provide a major role as a nursery for juvenile fish rather than
larvae as has previously been assumed (Geddes and Puckridge 1989).  The loss of these
habitats, through installation of intentional or unintentional barriers, may therefore
present a major loss of habitat that is crucial to the life cycle of many fish species.
Determination of the effects of flow control structures on fish movement is therefore
critical in the long term conservation of the fish fauna within the Murray River. 
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Figure 13. Proportion of fish moving out of and into wetlands.

Zero represents an equilibrium between the number of fish moving between wetlands and the river (ie.
no significant recruitment).  Positive values indicate that a majority of fish were moving out of wetlands
towards the river.  Negative values indicate that a majority of fish were moving into wetlands.  Values
that differed significantly from equilibrium (p < 0.05) ( ie. The population is either a source of
recruitment or a sink) are indicated with an *.



Abundance data collected during this project has indicated that for some species, the
wetlands surveyed were acting as population sinks, with significantly more fish entering
wetlands than leaving them during certain seasons.

Analysis of size frequency data within this project has indicated that wetlands may be
acting as grow-out (nursery) areas for Australian smelt, bony bream, callop and goldfish,
with a greater number of larger individuals of these species collected moving out of the
wetlands than were collected moving in.  For bony bream, callop and goldfish, the use
of wetlands as grow-out areas is possibly true, with size class data and abundance data
indicating movement out (although fish movement out of wetlands for any species at
any season was not found to be significant).

Significant results relating to the movement of fish into the wetlands, but non-
significant results for fish moving out, indicate that the wetlands may also be acting as
population sinks for many species.  It is possible that these results are a reflection of the
presence of flow control structures on the wetlands within this survey.  The presence of
a structure may present a barrier to fish movement out of wetlands physically or
behaviourally, thereby limiting movement of fish back into the mainstream.  Structural
characteristics, their influence on water quality and flow conditions, as well as
positioning of structures all play a part in the ability of fish to traverse them.  Equally
important to structure design and positioning is structure management.  The number of
cells opened during the filling phase will influence water velocities through the
structure, as will the build up of debris across the culvert.  Timing of opening and
closing may influence the species that are able to move through, and closure of the
structure will completely inhibit movement of fish through the structure in either
direction.

With the exception of Pilby Creek Lagoon, all of the wetlands within this study are dried
through evaporation by closing the inlet structure on the wetland inlet.  When this
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Figure 14. Length frequency distributions of fish entering (black) and leaving
(clear) wetlands.



occurs there is no chance of escape for any aquatic organism, unless they move
overland (eg yabbies, turtles).  Management of structures in this way therefore causes
wetlands to act as population sinks for all fish species unless they are able to escape
prior to the inlet structure being closed.  It is likely, therefore, that significant differences
in movement of fish into wetlands compared to movement out is a direct reflection of
structure management, and drying of wetlands by evaporation.  For species that appear
to have a preference for wetland habitat (such as the suite of gudgeon species and
Australian smelt), this management action could become (or is currently) a threatening
process to the survival of these species.  Structure management is further discussed in
the following section (Objectives 4-6).

Objectives 4, 5 and 6. Impacts of structures, develop
guidelines, and make recommendations for their
management and construction.

The last three objectives within this project are related to the impacts of wetland flow
control structures on fish movement, and finding ways to improve them.  The three
objectives will therefore be discussed together here, with the original objectives being as
follows:
• determine the impacts of wetland inlet structures on fish passage for native fish;
• develop guidelines to facilitate movement of native fish through inlet structures while

excluding carp;
• make recommendations for the design of new structures.

Fish communities present

Analysis of fish community data was undertaken to determine the differences or
similarities between fish communities at different habitats within different wetlands, and
between managed and unmanaged wetlands.

The analyses suggest that the sampling undertaken for this project was sufficiently
powerful to detect significant differences between fish communities.  When all wetland
systems were pooled, ANOSIM analysis revealed significant differences occurring
between fish communities within the different habitats of the managed wetland systems
(Table 8).

Table 8. ANOSIM results from analysis of fish communities among different
habitats sampled (all wetland systems pooled).

Habitats compared *Significantly different communities are shaded. Significance 

River - Inlet (wetland side) 0.001  
River - Inlet (river side) 0.001  
River – Wetland (managed) 0.001  
River – Inlet (un-managed) 0.801  
River – Wetland (un-managed) 0.459  
Inlet (wetland side) – inlet (river side) 0.001  
Inlet (wetland side) – Wetland (managed) 0.011  
Inlet (wetland side) – Inlet (un-managed) 0.820  
Inlet (river side) – Wetland (managed) 0.001  
Inlet (river side) – Inlet (un-managed) 0.998  
Wetland (managed) – Wetland (un-managed) 0.325  
Inlet (un-managed) – Wetland (un-managed) 0.611  
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Fish communities occurring in managed habitats were found to be significantly different
from the riverine fish community (Table 8).  In contrast, un-managed wetlands and
inlets have fish communities consistent with the riverine fish community (Table 8).  This
relationship is consistent when all wetlands were analysed separately with the exception
of Lake Littra where the river and lake where only just non-significantly different (p
=0.054) -Table 9.

In managed wetlands, fish communities occurring on the river and wetland side of
wetland control structures were found to be different (Table 8).  This suggests that
wetland inlet structures created an artificial discontinuity in fish communities moving
between wetlands and the river.  Although the combined results were significant, when
wetlands where analysed separately, inlet fish communities on either side of the control
structures were not significantly different at Little Duck, Loveday or Werta Wert (Table
9).  These differences may have resulted from the improved power of the combined
analysis, or through the demonstrated differences in fish passage efficiency of each
structure.  However, non- significant correlations of RFPstructure with Bray-Curtis similarities
of fish communities on either side of each structure (FPUS; r = -0.21, p > 0.05 , FPDS; r =
0.22, p > 0.05) do not support the later argument.

Fish communities occurring within managed wetland inlets and the wetlands themselves
were also found to be significantly different but were not significantly different in un-
managed wetlands (Table 8).  When each wetland was analysed individually, however,
significant differences were only found at Loveday Wetlands, Lake Merreti and Pilby
Creek Lagoon (Table 9).

No significant differences between managed and un-managed inlets could be detected
in the pooled analysis (Table 8).  This is likely to be a result of small numbers of
replicates in un-managed inlets, as it would be expected that a significant difference
would be found between communities on the wetland side of managed inlets and those
in the un-managed inlets.

Table 9. ANOSIM results from analysis of fish communities among different
habitats sampled.

Habitats compared  *Significantly different communities are shaded. Significance 

Lake Littra   
Punkah Creek - Inlet (creek side) 0.008  
Punkah Creek - Inlet (wetland side) 0.048  
Punkah Creek – Lake Littra 0.054  
Inlet (creek side) – Inlet (wetland side) 0.029  
Inlet (creek side) – Lake Littra 0.029  
Inlet (wetland side) – Lake Littra 0.8  

Werta Wert Lagoons 
Monoman Creek – Inlet (creek side) 0.071  
Monoman Creek – Inlet (wetland side)  0.016  
Monoman Creek – Werta Wert Lagoons  0.018  
Inlet (creek side) – Inlet (wetland side) 1  
Inlet (creek side) – Werta Wert Lagoons 0.5  
Inlet (wetland side) – Werta Wert Lagoons 0.971     
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Habitats compared  *Significantly different communities are shaded. Significance 

Pilby Creek Lagoon 
Murray River - Inlet (creek side) 0.024  
Murray River - Inlet (wetland side) 0.008  
Murray River – Outlet 0.005  
Murray River – Pilby Creek Lagoon 0.001  
Inlet (creek side) – Inlet (wetland side) 0.012  
Inlet (creek side) – Outlet 0.006  
Inlet (creek side) – Pilby Creek Lagoon 0.001  
Inlet (wetland side) – Outlet 0.946  
Inlet (wetland side) – Pilby Creek Lagoon 0.01  
Outlet - Pilby Creek Lagoon 0.058     

Lake Merreti 
Ral Ral Creek - Ral Ral Creek US 0.329  
Ral Ral Creek – Inlet (creek side) 0.215  
Ral Ral Creek - US Inlet (creek side) 0.071  
Ral Ral Creek – Inlet (wetland side) 0.001  
Ral Ral Creek – Lake Merreti 0.001  
Ral Ral Creek US – Inlet (creek side) 0.731  
Ral Ral Creek US – US Inlet (creek side) 0.143  
Ral Ral Creek US – Inlet (wetland side) 0.003  
Ral Ral Creek US – Lake Merreti 0.001  
Inlet (creek side) - US Inlet (creek side) 0.587  
Inlet (creek side) – Inlet (wetland side) 0.002  
Inlet (creek side) – Lake Merreti 0.001  
US Inlet (creek side) – Inlet (wetland side) 0.138  
US Inlet (creek side) – Lake Merreti 0.077  
Inlet (wetland side) – Lake Merreti 0.015     

Little Duck Lagoon 
Gurra Gurra Creek - Inlet (creek side) 0.001
Gurra Gurra Creek - Inlet (wetland side) 0.001  
Gurra Gurra Creek - Little Duck Lagoon 0.001  
Inlet (creek side) - Inlet (wetland side) 0.141  
Inlet (creek side) – Little Duck Lagoon 0.006  
Inlet (wetland side) – Little Duck Lagoon 0.083  

Loveday Wetlands 
Murray River - Inlet (creek side) 0.022  
Murray River - Inlet (wetland side) 0.001  
Murray River – Loveday Wetlands 0.001  
Inlet (creek side) – Inlet (wetland side) 0.105  
Inlet (creek side) – Loveday Wetlands 0.001  
Inlet (wetland side) – Loveday Wetlands 0.012     

Chowilla Oxbow 
Chowilla Creek – Inlet 0.589  
Chowilla Creek – Chowilla Oxbow Wetland 0.125  
Inlet – Chowilla Oxbow Wetland 0.3     

Gurra Control Wetland 
Gurra Gurra Creek – Inlet 0.901  
Gurra Gurra Creek – Gurra Control Wetland 0.649  
Inlet – Gurra Control Wetland 0.929     
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No significant differences were detected between fish communities in managed and un-
managed wetlands as groups (Table 8).  When wetland fish communities were
compared individually, however, many wetlands contained significantly different fish
communities.  The non-significant result between the managed and un-managed
wetlands in the combined analysis is therefore most likely due to the differences within
the managed wetlands group being just as great as the differences between managed
and un-managed wetlands (ie that all wetlands are different).

Only two control (un-managed) wetlands were used during this study – one permanent
and one temporary.  Given the inherent variation amongst managed wetlands, to
determine if the differences between managed wetlands and un-managed wetlands are
due to the presence of the flow control structures, a greater number of un-managed
wetlands would be required within the analysis.  At present it can be said that Gurra
Control Wetland is significantly different to all managed wetlands but cannot be said
that it is because of the wetland inlet structures.  In contrast Chowilla Oxbow Wetland
was not found to be significantly different to the other wetlands except for Gurra
Control Wetland and Little Duck Lagoon.  However, this non-significant result is likely to
be a Type II error, resulting from the low number of replicate samples at Chowilla
Oxbow.

In order to determine the structure induced and natural differences in wetland fish
communities, a greater sampling effort would be required employing more wetlands
and in particular more un-managed wetlands.  Despite this, a comparison of the ability
of the structures monitored within the study can be made.

Effect of structure on fish passage under current management

Fish passage through the structures monitored within this study was determined
through the calculation of a relative fish passage index (RFP).  RFP values are spread
between zero and one (zero being totally obstructed fish passage) and values greater
than 0.5 being equivalent to unobstructed fish passage).

Movement of fish into wetlands was found to be significantly inhibited at Little Duck
Lagoon and Loveday Wetlands, although this was only slightly obstructed for Loveday
(p < 0.05) (Figure 15).  Movement of fish into Pilby Creek Lagoon was also obstructed,
although this relationship was not found to be significant.  Lake Merreti, Werta Wert
Lagoons, and Lake Littra structures were all found to allow fish passage into wetlands,
with fish passage indices of 0.5 or above.

Wetlands that have unobstructed fish passage in the downstream direction indicate
either of two things: a) fish are moving with the flow of their own accord and the
structure is not proving to be a behavioural barrier to fish movement in this direction, or
b) fish are being swept in during periods of high flow (eg wetland filling), giving the
impression that the structure is not an obstruction.

For upstream fish passage (movement out of wetlands), Lake Merreti and Pilby Creek
Lagoon structures are significant obstructions to fish movement (p < 0.05) (Figure 15).
Lake Littra, Werta Wert Lagoons, Loveday Wetlands, and Little Duck Lagoon were all
found to have unobstructed fish passage out of the wetlands (p < 0.05).  Of these
structures, Lake Littra was the closest to unobstructed fish passage out of the wetland,
followed by Werta Wert Lagoons, with Loveday Wetlands and Little Duck Lagoon only
slightly significant.
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Of those structures that obstruct fish passage, it is of no surprise that the Lake Merreti
structure is one of them.  This structure is a long (17.8m), 90cm diameter pipe
structure, set into a large embankment.  Within this structure, a long distance of
relatively uniform high velocities would be created at times of high river flow or wetland
filling, requiring fish to battle against strong laminar flow in order to “escape”.

Flows recorded on the wetland side of the structure (mid depth and width) reached
over 2.00m/sec (highest recorded velocity was 2.56m/sec on the 10/10/00) when two
flow peaks of 42,050ML/day and 63,427ML/day reached South Australia in October and
December 2000.

These velocities are the highest of all structures measured (Table 10), and exceed the
1.8m/sec maximum burst speed that has been recorded for adult callop and silver perch
negotiating a mainstream vertical slot fishway (Mallen-Cooper 1994).  In addition, these
velocities are much greater than the prolonged swimming speeds of 0.3m/sec recorded
for fish greater than 100mm at Torrumbarry fishway (Mallen-Cooper 2001).  Velocities
of this magnitude would therefore prove to be a significant barrier to most species.  The
only other structure where similar flow velocities were recorded was Pilby Creek Lagoon
with velocities of 2.028m/sec on the 8/01/02 (Table 10).

With the exception of the high velocities experienced in late 2000, early 2001, and a
short period in November-December 2001 when flows reached 0.86m/sec, water
velocities through Lake Merreti inlet structure remained below 0.323m/sec for the
remainder of the project when river flows were restricted to pool level (3/12/02). 

Table 10 indicates the maximum and minimum velocities recorded for each structure.
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Table 10. Maximum and minimum water velocities (into wetland) recorded for
each structure

*only 2 recordings taken, # average of inlet nets

Max Velocity Min Velocity
(m/sec) Date   (m/sec) Date  

Lake Littra 0.753 19/12/00  0.005 01/01/01  
Werta Wert Lagoons* 0.968 18/12/00  0.053 06/12/00  
Chowilla Oxbow Wetland# 0.01 06/12/00  0.00 20/11/00  
Pilby Creek Lagoon 2.028 08/01/02  0.005 21/04/01  
Lake Merreti 2.56 10/10/00  0.003 11/04/01  
Little Duck Lagoon 0.145 13/10/02  0.008 06/01/01  
Gurra Control Wetland# 0.0675 08/12/02  0.00 03/02/01  
Loveday Wetlands 0.775 16/01/02  0.002 25/07/02  

All other permanently connected wetland structures had flow velocities similar to Lake
Merreti during pool level flows when water levels in the river and wetlands had
equalised (Pilby Creek Lagoon below 0.118m/sec; Little Duck Lagoon below
0.105m/sec; Loveday Wetlands below 0.085m/sec).

In addition to the Lake Merreti structure, Pilby Creek Lagoon structure also obstructed
fish passage out of the wetland.  This finding is surprising as this structure (open-topped
box culvert) is currently one of the preferred structure design options.  Clarification of
this finding may lie in the structure setting and management. 

Pilby Creek Lagoon has an inlet that connects to the upper pool of Weir Six, and an
outlet that connects to the lower pool of Weir Six (upper pool of Weir Five).  This means
that when the wetland is full and the inlet and outlet structures are open, water
travelling through the wetland can by-pass Weir Six.  However, in order to hold water
out of the wetland, as during a drying phase, the inlet structure must be at least as high
as the upper pool level of Weir Six.  This has meant that the structure is perched above
the bed level of the inlet channel downstream of the structure (on the wetland side)
and where the structure is situated (Plates 7b, 7c).  Therefore, when water in the
wetland is not at pool level (such as when the structure is partially open, or when there
is a greater outflow than inflow), fish must first negotiate a step or cascade effect before
passing through the structure itself.

To avoid the perched nature of the structure, the base of this structure should have
been set at the base level of the inlet channel rather than at a higher level.  This would
have allowed water on the wetlands side inlet channel to reach the structure and allow
fish access to it, but would still provide a barrier to fish movement out of the wetland
until water levels were near equilibrium.  To improve fish passage through this culvert, a
recommendation by Mallen-Cooper (2001) could be applied.  Mallen-Cooper suggests
that to allow fish passage to occur at perched culverts a “grade control structure”
should be installed to raise the water level on the wetland side.  This is a form of small
fishway, where a series of pools are created, joined by small riffle areas until the water is
raised to the level of the structure (Mallen-Cooper 2001).  Unfortunately this remedy
would be expensive, and require major earthworks to install.

In addition to the perched nature of the culvert, until July 2001 (during the initial stages
of sampling at Pilby Creek Lagoon) the fish screens on this inlet structure had very small
openings (10mm x 10mm) (Plate 7d).  These were replaced in July 2001 by screens
with a vertical grill design, with the metal rods also placed approximately 10mm apart
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(Plate 7e).  The size of these fish screens is small, and may have also contributed to the
obstructed fish passage out of Pilby Creek Lagoon, although the fish passage index for
fish movement into Pilby Creek Lagoon contradicts this.  Further discussion on the
effectiveness of fish screens (especially in relation to carp control) follows in the section
“effectiveness of fish screens – differences in carp abundance and biomass”.

Effect of structure on movement of individual fish species
(under current management)

Average RFPspecies for movement into and out of wetlands are given in Table 11 and
Table 12.  RFPspecies are weighted averages for each species based on the number of
individuals collected.  Weighted averages were used as more confidence can be placed
in fish passage indices calculated from larger samples.  Both tables of RFPspecies should
be viewed as an illustration that, although the fish community may or may not be
affected by certain water quality, environmental, or structural characteristics, individual
species are affected differently at the different structures.

Loveday Wetlands appears to have least effect on fish movement into the wetlands
(under current management), with only one species, Australian smelt, being significantly
inhibited (Table 11).  Lake Merreti was found to be the worst structure for movement of
fish into the wetland, effecting ten species.  Lake Littra and Pilby Creek Lagoon both
significantly inhibited three species from moving into the wetlands, with the other two
structures, Little Duck Lagoon and Werta Wert Lagoons, significantly inhibiting five
species.

For movement out of wetlands, RFPspecies indicate that Werta Wert Lagoons structure is
the least inhibitive to fish, with only two species – carp and gambusia – being
significantly inhibited.  Again, Lake Merreti structure inhibited movement of the most
species (ten).  Lake Littra inhibited the movement of four species, with all other
structures inhibiting the movement of six species out of the wetlands.
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Table 11. RFPspecies indices ± standard errors for each species moving into wetlands.

Cases of significantly inhibited fish passage are highlighted in grey. Instances where no standard error is given
represent values calculated from a single replicate sample (no statistical test possible).

Species Loveday Werta Wert Merreti Pilby Littra Little Duck 

Bony bream 0.50 ± 0.03 0.08 0.22 ± 0.06 0 1 0.86 ± 0.03 
Callop 0.99 ± 0.08 1 0.07 ± 0.01  0.68 ± 0.34 0.03 ± 0.00 
Common carp 0.69 ± 0.11 0.01 ± 0.00 0.45 ± 0.06 0.00 ± 0.00 0.95 ± 0.24 0.99 ± 0.07 
Goldfish 0  0.00 ± 0.41  0 1.0 ± 0.04 
Carp/goldfish hybrids 0.28 ± 0.03 0.34 ± 0.17 0.85 ± 0.04 0.30 ± 0.03 1 0.30 ± 0.02 
Gambusia 0 1 0.99 ± 0.16 0 0.77 0.98 ± 0.09 
Redfin perch 0 1 0.00 ± 0.25  0 0.35  
Australian smelt 0.29 ± 0.02 0.10 ± 0.02 0.35 ± 0.02 0.26 ± 0.02 0.98 ± 0.13 0.27 ± 0.01 
Lake’s carp gudgeon 0 1 0.00 ± 0.00   0.87 ± 0.04 
Midgely’s carp gudgeon 0 0.34 0.16 ± 0.09  1 0.93 ± 0.04 
Western carp gudgeon 0.57 ± 0.04 0.30 ± 0.11 0.54 ± 0.02 0.59 ± 0.11 0.73 ± 0.33 0.63 ± 0.01 
Flathead gudgeon 0.77 ± 0.34 0.13 ± 0.06 0.30 ± 0.01 0.75 0 0.27 ± 0.01 
Dwarf flathead gudgeon 0.41 ± 0.04 0.38 ± 0.01 0.32 ± 0.01 0.00 ± 0.00 0.03 ± 0.00 0.31 ± 0.02 
Fly-specked hardyhead 0.69 ± 0.11 0.20 ± 0.10 0.23 ± 0.04 0.53 ± 0.27  0.98 ± 0.09 
Crimson spotted rainbowfish 0.04 0.16 ± 0.01  0.00 ± 0.00 0.77 ± 0.03 
Catfish 



Carp movement into wetlands was only significantly inhibited at Werta Wert Lagoons
and Pilby Creek Lagoon.  Carp movement out of wetlands was only significantly
inhibited at Werta Wert Lagoons and Lake Littra.  Interestingly Werta Wert Lagoons is
the only managed wetlands without carp screens.

Effect of structure on fish passage taking into account flow
direction

For several wetlands (Lake Littra, Little Duck Lagoon, and Loveday Wetlands), slight
changes in flow direction through the structure occurred during the survey.  When data
from these wetlands was re-analysed based on the direction of flow, RFPstructure values
suggest that downstream fish passage (movement with the flow) was only significantly
inhibited at the Loveday Wetlands structure, with Pilby Creek Lagoon structure also
obstructing fish passage, although the relationship was not significant.  All other
structures remained un-inhibited, with relative fish passage actually improving slightly
for the Lake Littra structure (Figure 16 cf Figure 15).

However, when upstream fish passage (movement against the flow) was re-analysed
Lake Merreti and Pilby Creek Lagoon continued to inhibit upstream fish passage, with
upstream fish passage also becoming significantly inhibited at Lake Littra (which was
non-significant when analysed on direction of fish movement only).  Little Duck Lagoon
and Werta Wert Lagoons structures remained un-inhibited throughout the survey, with
the slight obstruction recorded at Loveday Wetlands now not evident when direction of
flow is taken into consideration (Figure 16).

Lake Littra structure being found to inhibit upstream fish passage is a surprise.  As with
Loveday Wetlands, this structure is a relatively short box culvert with a cross-sectional
area approximating that of the inlet channel.  Unlike Loveday Wetlands, however, Lake
Littra structure is high, allowing light to easily penetrate into the culvert cells. 
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Species Loveday Werta Wert Merreti Pilby Littra Little Duck 

Bony bream 0.55 ± 0.05 0.31 ± 0.16 0.11 ± 0.02 1 0 0.91 ± 0.04 
Callop 0.82 ± 0.41 1 0.00 ± 0.00 0 0 0.29 ± 0.03 
Common carp 0.49 ± 0.06 0.21 ± 0.04 0.69 ± 0.23 1.0 ± 0.02 0.03 ± 0.01 0.96 ± 0.05 
Goldfish 0.50 ± 0.25  0.00 ± 0.07 0 0.99 ± 0.23 1.00 ± 0.07 
Carp/goldfish hybrids 0.86 ± 0.08 0.62 ± 0.31 0.20 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.43 ± 0.03 
Gambusia 0.98 ± 0.49 0.20 ± 0.10 0.01 ± 0.00  0 0.61 ± 0.07 
Redfin perch 1 0 0   0.63 ± 0.04 
Australian smelt 0.33 ± 0.02 0.38 ± 0.06 0.50 ± 0.03 0.02 ± 0.00 0.00 ± 0.00 0.21 ± 0.01 
Lake’s carp gudgeon 0   0.78 ± 0.04 
Midgely’s carp gudgeon 1.0 ± 0.18 0.91 0.00 ± 0.04  0 0.76 ± 0.02 
Western carp gudgeon 0.41 ± 0.03 0.43 ± 0.11 0.08 ± 0.00 0.31 ± 0.08 0.14 ± 0.05 0.44 ± 0.01 
Flathead gudgeon 0.63 ± 0.21 0.61 0.14 ± 0.01 0 0.51 ± 0.06 0.29 ± 0.01 
Dwarf flathead gudgeon 0.51 ± 0.05 0.44 ± 0.12 0.23 ± 0.01 0.37 ± 0.19 0.88 ± 0.11 0.06 ± 0.00 
Fly-specked hardyhead 1.0 ± 0.29 0.34 0.78 ± 0.05 1.0 ± 0.04 1 0.73 ± 0.04 
Crimson spotted rainbowfish 0.12 0.00 ± 0.00  1.00 ± 0.28 0.80 ± 0.04 
Catfish 0

Table 12. RFPspecies indices ± standard errors for each species moving out of wetlands. 

Cases of significantly inhibited fish passage are highlighted in grey. Instances where no standard error is given
represent values calculated from a single replicate sample (no statistical test possible).



It is therefore unknown why this structure would inhibit upstream fish passage, but
again, this may be a result of structure management.  On some occasions debris was
noted to have built up on the river side of the structure, creating a headloss between
the upstream and downstream sides.  In addition to the barrier the debris would have
created, the headloss may have made it difficult for fish to traverse the culvert.
Maintenance of the culvert can therefore be seen to be an important part of
management.

Lake Littra structure also has fish screens present on the culvert.  These screens comprise
the “security type” mesh with vertical metal rods welded mid way across each opening
so that the area of each hole in the mesh is halved (from 97mm wide x 33mm high to
approximately 50mm x 33mm).  The lesser opening size of the screen may limit the size
of fish able to move through the structure, therefore contributing to the poor RFPstructure

for upstream passage.  Further discussion on the effects of structure characteristics
occurs in the section “structural characteristics affecting fish movement”.

It was surprising to find Loveday Wetlands structure also inhibitive to fish passage into
the wetland.  This structure, comprising six box culvert cells, is short in length, roughly
equates to the width of the surrounding inlet channel, and is open enough to allow
light penetration into the culvert.  However, despite its structural characteristics being
appropriate, management of the structure may be causing its poor performance for fish
passage.  During times of high river flow, the fish screens and stop logs that allow its
operation are removed (this normally occurs at flows of approximately 15,000ML/day:
Weir pers. com. 2003).  However, management of the structure is such that not all cells
are open at any one time (Nichols pers. obs. 2001b).  This limits the cross sectional area
available for water movement into and out of the wetland, thus increasing water
velocities, and potentially limiting fish movement back to the river.
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fish moving with (downstream) or against the flow (upstream).



Synopsis
Analysis of the relative fish passage values for each structure indicates that it is not only
structural characteristics that affect fish movement, but also structure management. 

Wetland management objectives have a major part to play in the ease of access for fish
into and out of wetlands.  Essentially the inlet structure present on a wetland is used for
management of water to allow wetting and drying of the wetland.  This, in turn, allows
the growth of vegetation in both the wet and dry phases, which provides food, shelter
and nutrients in the aquatic ecosystem.  However, using the flow control structure to
provide water at a certain rate of filling to allow plant growth to occur, may not
necessarily be conducive to allowing fish passage into and out of a wetland.  In
addition, to plants it does not matter how the water is supplied (whether two are fully
opened or six cells are partially opened at the same time), but to fish the number of
cells open will be very important – influencing water velocities within each cell of the
structure.  Therefore if fish passage is important, it is necessary to manage the flow
control structure to allow wetland filling at the correct rate and maintain fish passage by
utilizing the structure to its full capacity.

Inherent within this study is the inability to separate the effect of structural
characteristics on fish passage from the effect of the fish screens at each structure.
Despite this, it was possible to determine the effectiveness of fish screens at controlling
carp abundance and biomass within managed wetlands overall by comparing the carp
populations within screened wetlands with those wetlands without fish screens present
within the study.  This is further discussed in the section “effectiveness of fish screens –
differences in carp abundance and biomass”.

It is interesting that at Little Duck Lagoon structure (a single small and short pipe)
downstream fish passage (movement into the wetland) is significantly less than
upstream fish passage (movement out of the wetland) during normal operation.  
The structure is near level, set on the base of the inlet channel (not perched), and does
not receive high velocity flow except during the initial stages of refilling, therefore it
should not prove to be a great barrier to fish movement.  Indeed this was the case
when fish passage was re-analysed based on the direction of flow, with the RFPstructure
improving so that the downstream fish passage was no longer obstructed.

For movement out of the wetland, Little Duck Lagoon structure was not found to
obstruct fish passage under current management, although remained on the borderline
0.5 RFPstructure value during this analysis.  When direction of flow was taken into account
upstream fish passage increased slightly.

If improvement of Little Duck Lagoon structure is required, this structure could be
improved for fish passage by increasing the percentage cross-sectional area of the
structure which at present is very low (important structural characteristics are discussed
in the section “structural characteristics affecting fish movement”).  This would allow
lower water velocities to occur within the culvert, enabling fish to pass through the
culvert with greater ease when travelling against the flow.  Installation of a box
culvert(s) at this wetland would improve fish passage into and out of this wetland,
however consideration should be made before this occurs as to whether this small,
shallow wetland is important fish habitat.  

Only Lake Littra structure and the structure at Werta Wert Lagoons were not found to
be obstructions to fish passage in the upstream direction under current management.
The structures on these temporary wetlands were only sampled over a short timeframe
(spring / summer 2000) and a greater sampling effort is required to improve
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undoubtedly improving the reliability of the findings.  Unfortunately further sampling at
these structures or the temporary control wetland, Chowilla Oxbow, was not possible
due to the lack of high river flows experienced during the study.

Lake Littra structure (a large box culvert) roughly approximates the cross-sectional area
of the inlet channel, and is short and high enough to allow light to penetrate to the
middle of the culvert.  Therefore according to recommendations from other reports (eg
Mallen-Cooper 2001), movement of fish through the structure in either direction should
not be inhibited.  This appears the case for upstream movement (out of wetlands)
under current management.  However, when the direction of flow was taken into
account at Lake Littra, the relative fish passage for that structure dropped to become
significantly inhibited.  Downstream movement of fish remained uninhibited for both
analyses, although was found to be nearing the 0.5 RFPstructure value (borderline value
between obstructed and unobstructed fish passage) when flow direction was not
accounted for.

It is possible that the build up of debris observed at this structure may have contributed
to obstruction of fish movement into (and out of) the wetland.  In addition, as with
Loveday Wetlands, this wetland has fish screens whose mesh size is approximately half
that of the regular “security” mesh type as a result of vertical metal rods welded
midway across the existing holes.  This smaller mesh size may have led to a greater
obstruction of fish both into and out of the wetland, by limiting the size of fish that can
pass, and increasing the tendency for the screens to become clogged with debris. 

At Loveday Wetlands structure under current management, downstream movement
(into the wetlands) was found to be significantly obstructed.  During the same analysis
the upstream passage of fish was found to be unobstructed (p < 0.05), although
remained around the borderline 0.5 RFPstructure value indicating the structure was not
acting optimally for fish passage.

When taking into account the direction of flow, the Loveday Wetlands structure
remained as an obstruction to fish passage in the downstream direction, although for
the same analysis it was not found to be significantly obstructing fish passage in the
upstream direction.  

Loveday Wetlands structure comprises six box culvert cells that extend the entire width
of the inlet channel.  The structure is short, allowing light to penetrate the entire length
of the culvert, and is set at the bed level of the surrounding channel.  Thus, according
to recommended guidelines (Mallen-Cooper 2001, Fairfull and Witheridge 2003), this
structure should not form an obstruction to fish movement.  Management of the
structure is therefore the most likely reason that the structure has been found to inhibit
fish movement.  Management of the structure to allow water movement into the
wetland during normal pool level flows usually only employs one or two of the available
six culverts (Nichols pers. obs. 2001b), as these cells are the only ones in the structure to
have fish screens in place (Tucker 2003).  Management of the structure in this way,
whilst allowing adequate water movement into the wetland, effectively decreases the
size of the culvert to one or two culverts wide (one sixth or one third of the actual
structure width).  This has the effect of increasing water velocities within the operational
cells and obstructing fish movement out of the wetland.  Similarly, management of the
structure in this manner may inhibit movement of fish into the wetland by either
producing some sort of behavioural barrier (avoidance of being swept into the culvert),
or physical barrier (use of the fish screens).  It is therefore recommended that
management of this structure utilize all cells within the structure rather than employing
only one or two.
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Management of the Loveday Wetlands structure during high river flows has been to
open all cells and remove the fish screens at relatively low flows (forecast river flows of
>15,000ML/day) due to structure access issues (structure over-topped at
30,000ML/day) and to minimize the effects of the screens on native fish species (Weir
pers. com. 2003).  The effectiveness of fish screens at controlling carp abundance and
biomass is discussed further in the section “effectiveness of fish screens – differences in
carp abundance and biomass”.  Future management of fish screens should take into
account the findings discussed in that section.

In addition to structure management, structure maintenance is important.  At Loveday
Wetlands structure this comment mostly refers to the removal of reed growth in the
inlet channel (Typha sp. (the most aggressive species) and Phragmites australis).  It is not
known what effect extensive reed growth has on fish movement, but it is likely to limit
the size of fish that can access these areas if reed growth extends across the entire inlet
channel.  Reeds had been removed from the inlet channel prior to the first samples
being taken at Loveday Wetlands, but have once again grown extensively near the
structure.  Reed growth should therefore continue to be managed in the inlet channel
of this wetland.

RFPstructure values for Lake Merreti structure (two long pipes) show that the passage of
fish in a downstream direction (into the wetland) was not obstructed for either analyses,
whilst the passage of fish in an upstream direction (out of the wetland) was found to be
significantly obstructed at all times.  Obstruction of upstream fish passage was expected
at this structure due to the poor design of this structure for fish passage (originally
designed for water management rather than fish movement).  Unobstructed movement
of fish into the wetland may be a result of fish being sucked into the culvert during high
flows, although for most of the project water velocities were low (minimum flow of
0.003m/sec – Table 10).

To move out of the wetland fish must swim for a long distance against laminar flow
created in the pipes as a result of the almost constant head difference present across the
structure (pipes are below water level on Ral Ral Creek side of the structure, but are
generally at the water surface at pool level flows on the wetland side of the structure).
According to Mallen-Cooper (2001), a headloss of only eight centimetres is enough to
be considered impassable to native fish.  During the high river in spring/summer 2000,
the maximum velocity recorded in the main inlet pipe was 2.56m/sec (Table 10), which
is well above the recommended water velocities for adult native fish to pass (0.75m/sec
for fish greater than 25cm: Mallen-Cooper 2001).

In addition, the structure is likely to be acting as a behavioural barrier to some species
(eg bony bream) due to the dark conditions within the pipes (Mallen-Cooper 2001).
This contradicts the relatively unobstructed RFPstructure values in the downstream direction
for the community as a whole, but corresponds with the high number of species that
are significantly inhibited at this structure in either direction when relative fish passage
was analysed species by species (Tables 11 and 12).

Lake Merreti main inlet structure could have its physical limitations on fish passage out
of the wetland lessened by increasing the cross-sectional area of the structure relative to
the inlet channel width, and by decreasing the length of the structure.  This would
increase the area through which water can pass, thereby decreasing the water velocities
encountered within the structure, decrease the distance that fish would be required to
swim to move out, and increase the amount of light that could enter the culvert.
Installation of additional cells is therefore required for this structure, with box culverts
being preferable (Mallen-Cooper 2001) to minimise laminar flow within the culvert.  It
would be possible to lower the embankment surrounding the Lake Merreti structure,
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which would allow the length of the structure to be lessened, without losing much of
the ability to flood the mature red gum zone as part of the wetland management
protocol for this wetland.  A shorter structure is preferable for fish movement (Mallen-
Cooper 2001). 

Pilby Creek Lagoon structure (open-top box culvert) proved to be almost totally
inhibitive to fish movement out of the wetland during both analyses (RFPstructure values
less than 0.05 for all analyses).  RFPstructure into the wetland was obstructed under current
management (non-significant relationship), however when flow direction was taken into
account RFPstructure values were nearly equivalent to free passage.

Upstream movement of fish out of the wetland is most likely inhibited as a result of a
combination of the effects of structure position and structure management.  Pilby Creek
Lagoon structure is perched from the downstream (wetland) side in order to hold water
out of the wetland at Lock and Weir Six upper pool level.  This means that at low water
levels, fish must first navigate a steep incline before they actually reach the structure
itself.  In addition, the fine mesh screens (1cm2) used during the initial stages of the
project would obstruct fish movement both into and out of the wetland.  As with the
Loveday Wetlands structure, management of the Pilby Creek Lagoon structure was such
that not all culvert cells were employed when providing water to the wetland.
Therefore, as with the Loveday structure, management of the Pilby Creek Lagoon
structure in this manner effectively reduces the cross-sectional area of the structure, and
increases the water velocities through the culverts actually used to supply the wetland.  

In order to reduce the impacts of current management on the fish passage through the
structure, as with Loveday Wetlands, it is recommended that all cells within the culvert
be employed to deliver water to the wetland.  The current fish screens installed (vertical
bars) are a vast improvement on the previous design, which would have been a major
obstruction to all fish movement, including the suite of small fish species that can
usually access wetlands through other fish screen designs (eg “security” type mesh).

However, the current screens would still be limiting to those fish that were not laterally
compressed, and as with all fish screens, would not allow large adult or sub-adult fish to
enter the wetland.  Further discussion of fish screen effectiveness occurs in the following
section.

To overcome the effects of the perched structure and allow fish passage out of the
wetland through the inlet structure, Mallen-Cooper (2001) recommends the installation
of a “grade control structure” which is a form of small fishway, where a series of pools
are created, joined by riffle areas until the water is raised from the bed level to the level
of the structure (Mallen-Cooper 2001).  Unfortunately this remedy is expensive, and
would require major earthworks to install.

In addition, movement of fish out through Pilby Creek Lagoon outlet structure is not
optimal.  When the wetland is drained into the downstream section of Pilby Creek,
discharge occurs onto rock rubble, which was distributed there following construction
of Lock Six access road.  At pool level flows, when there is no water present in the creek
downstream of the structure prior to draining, fish will undoubtedly become damaged
or killed as a result of being flushed from the wetland.  As with the upstream passage of
fish out the inlet structure, fish would benefit from a series of pools being installed to
minimise damage as they are expelled from the wetland, and allow safe return to the
river.  Works such as this would also minimise effects of erosion as a result of water
discharge from the structure.  However, as with the upstream “grade control structure”
earthworks required would be expensive. 
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Werta Wert Lagoons structure (medium length, temporary pipes) was the only structure
to not inhibit fish movement in either direction during either analyses; however
RFPstructure values for both upstream and downstream fish passage remained only slightly
above the borderline 0.5 RFPstructure value indicating the structure was not acting
optimally for fish passage.

As with the Lake Merreti structure, fish would be required to swim against laminar flow
over a moderate distance in order to move out of the wetland.  At Werta Wert Lagoons
structure however, the water velocities experienced would likely be less than those at
Lake Merreti due to the lesser head difference experienced at times of flow.  As with
Lake Littra wetland, Werta Wert Lagoons was only sampled during the high river of
spring/summer 2000.  In addition, structural readings (eg flow) at the time of sampling
were only taken on two occasions; therefore it is not valid to conclude that this
structure is satisfactory for fish passage without more samples being taken.

Effectiveness of fish screens – differences in carp abundance
and biomass

Differences in carp populations in wetlands versus river environments were examined in
order to determine the effectiveness of fish screens in controlling these introduced fish.

Fish screens are installed on many wetland flow control structures in an attempt to
control carp populations within the wetlands and allow enhanced rehabilitation of these
sites.  Carp are known to prefer the warm, shallow, well vegetated floodplain or wetland
environments to spawn (Smith 1999).  Reynolds (1983) noted a general movement of
carp (approximately 325mm: 0+ to 1+ year class) out of wetlands and into the
mainstream, indicating that these areas may act as nursery areas for juvenile carp.
Stuart and Jones (2002) captured young of the year carp at all floodplain sites sampled
in the Barmah-Millewa forest during the flood of spring/summer 2000.  They
hypothesised that recruitment appears reliant on access of adults to floodplain spawning
areas and on nursery habitats in off-stream and anabranch habitats being available to
young of the year fish (Stuart and Jones 2002).

In addition to their spawning habits, the feeding action of carp has been implicated in
the increase in turbidity, and the uprooting of water plants (Fletcher et al. 1985).
Removal or prohibition of carp from entering wetlands is therefore seen as an advantage
in allowing the development of wetland vegetation which provides nutrients, cover and
food to many wetland species, and limiting the recruitment success of this species.

Carp abundance analysis
Analysis of the wetlands within this study reveal a significant habitat by wetland system
interaction for carp abundance, suggesting that the relationship between carp
abundances within wetlands and the river or anabranch systems differs at different
wetland systems (Table 13).

Comparisons at individual wetland systems suggest that carp are generally more
abundant in wetlands than in riverine habitats within all wetland systems except Gurra
Control Wetland.  However, as shown in Figure 18, the relationship was not found to be
significant at Gurra Control Wetland, Little Duck Lagoon, Loveday Wetlands, Lake
Merreti or Werta Wert Lagoons.  In addition, carp abundances in wetlands with fish
exclusion screens were not found to be significantly lower than those in Gurra Control
Wetland, Chowilla Oxbow Wetland or Werta Wert Lagoons that do not have fish
exclusion screens (Figure 17).  It can therefore be concluded that fish screens are not
effectively reducing carp abundances in the wetlands surveyed.
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Table 13. F-ratios and significance levels for analysis of variance of carp abundance
in wetland and riverine habitats with or without fish exclusion screens.

df – degrees of freedom; * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant.

Habit Wetlands Habitat * Wetland 
interaction   

All wetland systems combined  
Combined data 43.636(df: 1,149)*** 5.721(df: 7,149)*** 4.289(df: 7,149)**

Each wetland system analysed separately  
Wetlands with fish screens
Little Duck Lagoon 1.306(df: 1,28)

ns

Lake Littra 13.280(df: 1,6)*

Loveday Wetlands 3.080(df: 1,27)
ns

Lake Merreti 2.383(df: 1,36)
ns

Pilby Lagoon 24.539(df: 1,23)*** 

Wetlands without fish screens 
Werta Wert Wetland 3.972(df: 1,7)

ns

Gurra Wetland 1.600(df: 1,27)
ns

Chowilla Oxbow 6.960(df: 1,6)*

Size class analysis
Significant differences in size distributions between carp sampled from wetland and
riverine habitats were found at all wetland systems except Gurra Control Wetland
(Figure 18).  All significant results were based on greater frequencies of small carp (50 -
200mm) in wetlands.  No significant differences were detected for carp greater than
250 - 300mm except for Loveday Wetlands where significant differences were detected
for almost all size classes and a greater frequency of large carp occurred in the wetland
(Plate 12).
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Figure 17. Carp abundance (4th root transformed) at each wetland system in
wetland (black) and river/creek (clear) habitats.
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represent the upper and lower limits of the data.



Table 14. F-ratios and significance levels for analysis of variance of carp biomass
(grams) in wetland and riverine habitats with or without fish exclusion screens.

df – degrees of freedom; * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant.

Habit Wetlands Habitat * Wetland 
interaction   

All wetland systems combined  
Combined data 0.599(df: 1,243)

ns 5.752(df: 7,243)*** 5.793(df: 7,243)***

Each wetland system analysed separately  
Wetlands with fish screens
Little Duck Lagoon 20.279(df: 1,44)

***

Lake Littra 0.215(df: 1,49)
ns

Loveday Wetlands 8.715(df: 1,37)
**

Lake Merreti 1.538(df: 1,45)
ns

Pilby Lagoon 0.001(df: 1,17)
ns

Wetlands without fish screens 
Werta Wert Wetland 0.148(df: 1,17)

ns

Gurra Wetland 13.144(df: 1,19)
**

Chowilla Oxbow 1.053(df: 1,25)
ns

Figure 18. Length frequency distributions for carp sampled in riverine (black) and
wetland habitats (clear).

Probability values are based on Kolmogorov-Smironov goodness-of-fit tests comparing size distributions
in each habitat.
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Carp biomass analysis
As with the abundance data, a significant habitat by wetland system interaction was
identified for carp biomass, indicating that the relationship between carp biomass within
wetlands and the river differs at different wetland systems (Table 14). 

Comparisons at individual wetland systems suggest that carp biomass is significantly
greater in Gurra Gurra Creek than in either the unregulated Gurra Control Wetland or
the regulated Little Duck Lagoon (Table 14).  Lakes Littra and Merreti also had lower
carp biomass than adjacent creek habitats although these differences were not
significant (Figure 19).  In contrast carp biomass was greater in Loveday Wetlands,
Chowilla Oxbow Wetland, Pilby Creek Lagoon and the Werta Wert Lagoons (Figure 19),
although this difference was only significant at Loveday (Table 14).  Personal
observations showed that, although both Pilby Creek Lagoon and Loveday Wetlands
had significantly higher biomass of carp in the wetlands, the size classes were quite
different between the wetlands (Figure 18), with Pilby Creek Lagoon continually having
a large number of small carp (≤100mm) captured and Loveday Wetlands having a large
number of large carp (≥500mm) (Plate 12, Nichols pers. obs. 2001c).

Figure 19. Carp biomass (log(grams per net)) at each wetland system in wetland
(black) and river (clear) habitats

Circles represent the median, the boxes indicate the upper and lower quartiles and the whiskers
represent the upper and lower limits of the data.
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Synopsis
These results suggest that fish screens fitted to wetland inlet structures do not
significantly reduce carp abundances within wetlands.  The results for biomass are
mixed.  Despite the existence of fish screens, large carp (>250 – 300 mm) occur in
equivalent frequencies in riverine and wetland habitats.  This indicates that either large
carp are able to enter wetlands despite the existence of fish screens, or that juvenile
carp spawned elsewhere, enter wetlands and grow very rapidly within wetland habitats.
Carp are known to reach 200mm in their first year of life and 400mm by their third year
(Brown 1996).  At this size, carp would be benthic feeders, thus would be continuing to
cause disturbance to the wetland environment despite the presence of fish screens.  In
addition, carp are known to jump over 20cm above the water surface, potentially being
able to avoid by-pass fish screens on wetland inlets (Stuart and Jones 2002).  Serious
thought must therefore be made in regards to the potentially detrimental effects fish
screens may have on native fish passage and the screens poor success at controlling
carp abundance and biomass in wetlands. 

Structural characteristics affecting fish movement

A combination of flow, apron width and proportional cross-sectional area of the inlet
contributed to fish passage efficiency for fish migrating against the current (F3,27 =
34.54, p < 0.0001) (Table 15).  This combination of variables accounted for 79.33% of
the variation in upstream fish passage efficiency.  Fish passage is most efficient at higher
flows, when the apron width is low and when the cross-sectional area of the culvert is a
large proportion of the cross-sectional area of the inlet channel.  The greater proportion
of cross-sectional area of the inlet channel that the structure occupies will decrease
water velocities encountered in the structure and aid fish passage through it.  It is
unclear what factor the apron width plays in improving fish passage, although a lesser
width would decrease the distance of foreign material (cement) that fish must pass over
in order to escape, and therefore possibly lessen the behavioural avoidance of a
structure.  Improved upstream passage with increasing flow is interesting, as it would
seem in opposition to successful upstream fish passage.

Flow was the only variable that contributed to fish passage efficiency for fish moving in
the direction of flow (F1,29 = 11.15, p = 0.002) (Table 15), although this only
accounted for 27.78% of the variation in downstream fish passage efficiency.  Fish
passage was most efficient as flow declined, possibly indicating that fish successfully
avoided being sucked into the culvert at higher flows.  Due to the low explanatory
power of the model, it is obvious that other structural factors not measured, water
quality, or environmental variables are more influential for fish movement into wetlands. 

Table 15. Results of multivariate linear regressions of fish passage based on
structural characteristics of wetland inlet structures.

Upstream fish passage   Downstream fish passage                    

Variable Regression  ± SE P   Variable Regression  ± SE P  
coefficient coefficient

Flow 0.0941 0.0226 0.0003   Flow -0.1184 0.0355 0.0023 

Apron width -0.0053 0.0008 <0.0001       

% inlet area 0.0044 0.0012 0.0014       

Dooland et al. (2000) found that when using an artificial pipe culvert in the laboratory
flume that carp would swim with the flow or drift with it when flows were less than or
greater than 0.4m/sec.  At 0.4m/sec velocity carp (n=8, mean total length 372mm)
would spend a greater proportion of time on the upstream side of the culvert, rather
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than drifting or actively swimming downstream through it.  At velocities lower than this,
carp were observed drifting through the culvert with the flow whilst facing upstream.
When velocities were higher than 0.4m/sec carp would be swept through the culvert,
employing burst speed several times in order to again move upstream through the
culvert.  At water velocities of 0.4m/sec, carp would actively swim upstream away from
the culvert once they felt themselves being pulled into it (Dooland et al. 2000). 

It is therefore possible that this finding could be used as a management option when
filling wetlands.  If filling velocities could be kept at approximately 0.4m/sec, carp may
avoid moving into the wetlands.  Further investigations are needed to determine if
native fish act in a similar or different fashion when faced with these filling velocities.  In
addition, field investigations should occur to determine if the behavioural reactions
observed in the laboratory environment also occur within a natural inlet channel.

Carp deterrents

Aspects of carp behaviour in relation to structural characteristics, flow, and carp
deterrents were investigated by Dooland et al. (2000) and continued by Champion et
al. (2001).  All behavioural investigations were carried out in the laboratory using mock
culverts in a flume environment.  Abstracts of each of their investigations are found in
Appendix D.  A brief discussion of their findings is below.

Light
Carp were found to be reluctant to leave darkened areas of the flume under no flow
and flow conditions, with single carp strongly preferring the dark region and multiple
carp retaining a strong affinity with the dark areas (Dooland et al. 2000).  Multiple fish
were noted congregating on the dark/light boundary for an observation period before
one fish would dart into the light area, followed by the others, when they would return
to the darkened area (Dooland et al. 2000) .  When multiple fish were tested against
strong illumination (halogen light) within a non-lit laboratory, carp were found to
hesitate for longer but still dart through the lit culvert (Champion et al. 2001).
Illumination was not found to be a complete barrier, but acted as a deterrent to carp
movement within the laboratory environment (Dooland et al. 2000, Champion et al.
2001).

It has been noted by previous studies that a lit passage is required for some species of
native fish to move through tunnels (Mallen-Cooper 1996).  Larvae of callop and silver
perch have also been shown to be attracted to a light source (Gehrke 1990).  It is
therefore possible that a lit culvert may provide for native fish passage, but discourage
carp movement into and out of wetlands, with its effectiveness possibly being improved
when in combination with other deterrents.  However, its field relevance should be
investigated further to determine its effectiveness in a turbid water environment.

Acoustic deterrent
Fish are known to have different sound reception abilities (Knudsen et al. 1994), possibly
leading to ability for a species specific deterrent to be developed for carp. 

A semi submerged speaker was placed over the centre of a culvert in a laboratory flume
by Champion et al. (2001) in order to test the effects of sound as an acoustic deterrent
to a group of carp and a single fish.  Adult fish were constantly subjected to frequencies
in the range 5 to 1000 Hz when they attempted to traverse the culvert.

Carp responses were found to differ with the different frequencies tested for groups of
carp with a leader fish, and single carp (410mm total length) (Champion et al. 2001).
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At 10 and 20Hz, it was observed that these fish took a longer time to pass through the
culvert than at other frequencies where behaviour varied from casually moving through
the culvert or darting through it.  The greatest effect was observed at 20Hz where fish
would either dart through or turn back, splitting the group of fish (Champion et al.
2001).  The largest carp (410mm total length) was also found to be the most affected
by sound.

When the single carp was tested at frequencies between 15 and 50 Hz, the fish would
negatively react to the sound, either darting through or turning away from the device
and reapproaching it (Champion et al. 2001).  The greatest effect for this fish was at 20
and 25Hz frequencies.

The group of fish without a leader behaved differently to the group with a leader and
the single fish, with no difference recorded in the time taken for fish to traverse the
culvert with the sonic device in place, or when it was not (Champion et al. 2001).  It is
possible therefore that the leader fish (possibly used as the single fish) may have been
more sensitive to sound than the other carp present, indicating that individual fish may
have different reception abilities.

It was noted that after being confronted with the sound device several times, carp
became habituated to it and were less affected (Champion et al. 2001).

This form of deterrent has definite possibilities for employment at wetland inlet
structures to deter carp from entering, particularly as different fish species have different
reception abilities.  However, as with light, employing this mechanism in the field would
require a constant energy source to run the devices, which would increase the cost of
construction, add to the amount of maintenance required, and risk of failure through
the use of mechanical devices in remote areas.  It is recommended that responses of
native fish to a sound barrier be investigated further to determine if this form of
deterrent is feasible in the field.

Light/sound combination
A combination of light and sound was also investigated to determine if the response
elicited in carp was greater when these deterrents were used on their own (Champion
et al. 2001).  Champion et al. (2001) found that the carp would act in a similar manner
when faced with a combination of light and sound, as they did when faced with either
deterrent.  Whilst the response produced was not significantly greater than the
individual deterrents, it was rarely found to be less.

A combination of light and sound as a deterrent could potentially be useful at wetland
inlet structures, however, maintenance, risk of mechanical failure, and set up and
running costs are likely to limit their application.

Coarse substrate
The use of coarse grade aggregate (100mm) was investigated by Dooland et al. (2000).
Coarse substrate was placed either side of a pipe culvert in a laboratory flume, with
frequency of carp movement through the culvert determined.  Under no flow and flow
conditions carp passage through the culvert was actually found to increase when the
coarse substrate was present, although a greater amount of time was taken before
movement across the substrate under flow conditions (Dooland et al. 2000) .

It can be concluded that under laboratory conditions, coarse substrate did not act as an
effective deterrent to carp movement.  In the lower Murray it is likely that the substrate
would act in a similar fashion.  Several inlet structures currently in place (eg Lake Littra,
Werta Wert Lagoons) have rock rubble (approximately 150mm diameter) surrounding
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the culvert which does not appear to deter carp movement through the structures.  In
addition, this form of deterrent would require regular maintenance and reinstatement as
the effects of silt would decrease its effectiveness.  Coarse substrate is therefore not
recommended as an effective deterrent to carp passage at wetland flow control
structures.

Bubble curtain
A perforated plastic tube was placed adjacent the entrance to a culvert in a laboratory
flume with air pumped through at 100kpa pressure (Champion et al. 2001).  Groups
and single carp were tested to determine if this could be used as an effective deterrent
to carp.  Champion et al. (2001) found that when the group of carp (15 fish)
approached the curtain, fish would often turn back and circle, unwilling to move
through.  On occasion, a single fish from the group would dash through the curtain to
the darkened area on the other side, but rarely did the whole group move through.
Single fish were not deterred from moving through the culvert with the bubble curtain
present.  More often than trying to move through the curtain, carp would try to move
under the pipe to reach the darkened area, although towards the end of their
experimental period, it was noted that some fish became habituated to the curtain
(Champion et al. 2001).

For this method of deterrent to be used effectively in the field, it would need to have an
active power supply (as for light and sound deterrents).  Therefore its application in the
field environment is limited, and most likely costly.  In addition, due to habituation of
the test carp to the presence of the bubble curtain, it is probably that over a longer
period of time that the animals would become accustomed to it and not avoid it.
Therefore it is unlikely that this deterrent could be used practically in the field.

Half barrier
The final deterrent tested was a “half barrier” where chicken wire was reinforced with
metal rods and placed across the base of the culvert (Champion et al. 2001).  The
barrier stood 150mm from the base of the flume, with a 17° slope facing away from the
culvert.  All testing was conducted in a water depth of 600mm under no flow
conditions.

This deterrent proved a total barrier to carp during the ten minute trial time employed
(Champion et al. 2001).  Carp were noted trying to push their way through the chicken
wire barrier in either direction (sloping or perpendicular face), but never moved over
the barrier despite 450mm of water above it.

Further investigations should be undertaken to determine the success of this barrier in
the field, and its effects on native fish (in a laboratory and field environment).  A
previous study has shown that carp are non-directional jumpers, and can jump up to
400mm out of the water (Dooland et al. 2000) .  This may allow fish to traverse the half
barrier, especially at times of flow (when jumping is more prevalent: (Dooland et al.
2000)), thereby decreasing the effectiveness of the deterrent / barrier.

Synopsis of carp barriers
Figure 20 indicates the effectiveness of the various deterrents investigated by Champion
et al. (2001), with the half barrier far outweighing the other forms of deterrents under
laboratory conditions.  Further investigation of this method of deterrent including in the
laboratory for longer periods of time, its effectiveness in the field, and its effect on
native fish passage should be undertaken before it is employed as a legitimate method
of carp exclusion.  It is likely that the half barrier would require regular maintenance in
the field (removal of debris) to ensure its effectiveness.
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It is possible that a combination of all these deterrents, employed at different times
within a cycle, or under a random time frame, would prove successful at totally
stopping carp from entering wetlands.  Its effectiveness on native fish, and their ability
to enter wetlands should further be investigated.

Figure 20. Comparison of all controlled stimuli tested for a group of 15 carp with
leader under no flow conditions (mean value with standard error) after Champion
et al. (2001).

Monitoring movement through structures

An electronic fish counter was developed by Dooland et al. (2000), to record and
monitor fish movement through culverts.  When tested in the laboratory results were
promising, with electronic field disturbance recorded for fish moving through a culvert
which was distinguishable from that produced by vegetation.  However field testing of
the device showed that further development was required, with background noise from
a generator used to run the device interfering with the actual recordings, and possible
blockage caused by debris being an issue (Champion et al. 2001).  Despite this
drawback, with further development the device (or similar) still has the potential to
enable monitoring of fish movement through wetland inlet structures without direct
sampling of fish, especially in a turbid environment such as that found in the River
Murray.

Recommendations for the design and management of
structures (previous studies)

Several authors have recommended that the installation of culverts across waterways
(including wetland inlet channels and road crossings) incorporate certain characteristics
in order to minimise the structure’s effects on fish movement.

One of the main obstructions to fish passage, both within the mainstream channel or a
wetland inlet channel, is water velocity and water turbulence (Mallen-Cooper 2001).
These attributes have a direct effect on fish access through a culvert or structure by
impinging on the swimming ability of fish trying to pass through it.  When a structure
has a high water velocity associated with it fish must employ what is termed “burst
speed” in order to navigate laminar flow experienced within it (Mallen-Cooper 2001).
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As the name suggests, this swimming type only occurs in short bursts, and cannot be
sustained for long periods of time (Mallen-Cooper 1996).  Therefore, if the structure is
long, as well having high water velocities within it, it can form a physical barrier to fish.

Mallen-Cooper (2001) states that a head loss of only one centimetre can restrict the
passage of small fish 40-80mm in length.  The situation does not improve greatly for
larger fish, with 150mm fish having restricted passage when there is a head loss of
between one and five centimetres through a structure (Mallen-Cooper 2001).  Mallen-
Cooper goes on to state that a head loss of only eight centimetres can be considered
impassable by most native fish (Mallen-Cooper 2001).

To minimise the risk of high water velocities present within the structure, it is
recommended to maximise the width of the culvert to equal or greater than that of the
surrounding channel (Lugg 1997, Fairfull and Witheridge 2003).  Mallen-Cooper is more
exact, stipulating that the structure should be 1.2 times the width of the channel, more
if it is likely to be affected by erosion (such as if the channel is in a process of active
movement – this is not of great concern in the lower Murray) (Mallen-Cooper 2001).

In terms of the type of structure used, Anon (1995) suggests that circular culverts
(pipes) are the least desirable for fish passage.  This is supported by Lugg (1997) who
indicates that if the cross sectional area of the stream is significantly less than the cross
sectional area of a pipe structure, the high velocities at the pipe would create an
unfavourable environment for fish.  Lugg (1997) also suggests that box culverts are
more appropriate for fish passage if they: 

1. approximate the cross sectional area of the stream bed;
2. do not cause elevated flows or water falls;
3. are relatively short <10m in length and 
4. contain natural sediments.

Lugg’s observations are consistent with studies undertaken in Arkansas USA where little
difference in the overall movement of fish was observed between open box, ford
crossings and natural reaches (Warren and Pardew 1998).

The length of the culvert is also important, affecting the distance that a fish must travel.
Where velocities are high over a long distance fish may be unable to employ burst
speed for the entire culvert length, thus being denied the ability to pass.  However, in
cases where the water velocities are minimised (either through decreasing the culvert
length, maximising the culvert width, or both), the physical barrier becomes less.  In
addition to the physical barrier caused by long culverts, a behavioural barrier may be
formed through the lack of light able to penetrate the culvert.

Mallen-Cooper (2001) recommends that a culvert should be:

1. at least 1.2 times the width of the inlet channel;
2. relatively high to allow light to enter the structure; and
3. set into the base of the inlet channel by at least 0.3m.

As with recommendations from other studies (Anon 1995, Lugg 1997, Fairfull and
Witheridge 2003), a large structure width aims to minimise velocities within the culvert
thereby limiting the structure as a physical barrier to fish.  Similarly, the setting of the
structure also attempts to minimise the culvert as a physical barrier, as well as
minimising behavioural avoidance of the structure.
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By setting the structure into the channel bed at approximately 0.3m (as per (Mallen-
Cooper 2001)), sediment from the surrounding channel can move into the culvert,
decreasing the dissimilarity between the surrounding channel and the structure itself,
and minimising any potential behavioural avoidance of the structure.

In addition to minimising behavioural avoidance, setting the structure into the channel
bed can minimise the structure as a physical barrier.  Structures that are set too high
compared to the surrounding channel can produce a cascade effect prior to the
structure.  The high water velocities associated with this structural feature can stop fish
from being able to reach the culvert, let alone move through it (Mallen-Cooper 2001).

Another behavioural barrier to fish at a culvert is the lack of light.  Mallen-Cooper
(1996) found that bony bream were totally inhibited by a darkened passage and would
not move through artificially darkened tunnels, leading him to recommend the
installation of lit passages (Mallen-Cooper 2001), and other studies to adopt this
recommendation (Fairfull and Witheridge 2003). 
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Appendix A. Literature review.

General

It is widely acknowledged that the distribution and abundance of native fish in the
Murray-Darling Basin, has declined as a result of a number of impacts (McNee 2000,
Walker 1983, Milburn 1995, Wahlquist 1997, Sinclair 1999, Harris and Gehrke 1997,
Cadwallader 1978, Gehrke et al. 1995).  Findings from the New South Wales ‘Fish and
Rivers in Stress’ project demonstrate the severity of these impacts with degraded riverine
sites exhibiting decreased biodiversity (Harris and Gehrke 1997).

All fish species within the Basin are known to undertake some degree of movement
during their life, thus artificial barriers such as levees, culverts, weirs or flow control
structures that obstruct fish movement are likely to make a significant contribution to
this decline (McNee 2000).  Indeed, the Draft Native Fish Management Strategy for the
Murray Darling Basin considers barriers to be a key threat to native fish populations in
the Murray Darling Basin (Koehn and Nicol 1999).

In Australia, the need to store water is a major concern.  The variability of freshwater
flow, rapid agricultural development and concentrated populations in this country has
led to Australia storing water at a per capita rate nine times that of any other country
(Teoh 1989 cited in Harris et al. 1998).  Overseas studies demonstrate the consequences
of such barriers.  Of the nearly 200 European freshwater fish species, 67 are considered
threatened by human activity.  The major causes of decline were identified for 48
species, and of these, more than half were associated with artificial barriers to migration
(Northcote 1998).  The impacts of large regulating structures are two fold: while clearly
impacting on fish movement, they also change the inherent characteristics of riverine,
wetland and floodplain habitats in which these species evolved.

In systems like the Murray-Darling Basin where species have evolved to highly variable
conditions, river regulation has a sizeable impact.  Research findings suggest that the
diversity of fish species decreases as catchments become more regulated (Gehrke et al.
1995).  For example, changing the timing, duration, and frequency of flooding in the
Murray-Darling Basin reduces the reproductive success of native fish by
“desynchronizing environmental cycles and the reproductive cycles of native species”
(Gehrke et al. 1995).  The NSW Rivers Survey found that in the Murray catchment
exotic species, such as carp and redfin dominated the catch.  Stable (regulated) river
conditions are thought to disadvantage native species and favour the spread of exotics
(Harris and Gehrke 1997).
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The floodplain has a critical role in transforming material from the river, Welcomme
(1985) notes the productivity of fish in floodplain rivers is linked to interactions between
river and floodplain habitats (Welcomme 1985, Gehrke et al. 1995).  Not only does river
regulation alter and often sever this connectivity, it also affects freshwater fish habitat by
changing water quality.  Examples of such changes include the release of cold,
deoxygenated water from large storages, and changes to the proportion of water from
the Darling and Murray catchments delivered to the Lower Murray.

The Lower Murray is the most regulated part of the Murray-Darling system.  Of the ten
mainstream weirs that exist along its length, six occur between the South Australian
border and Blanchetown.  In addition to these large regulating structures, there are over
300 small structures on the floodplain that are potential barriers to fish movement
including causeways, road crossings and wetland inlet structures (Wetland Care Australia
1998).  The impacts of these smaller structures are largely unknown.  

The stable river levels maintained by the weirs on the River Murray have affected
adjoining wetlands.  Wetlands that fill at the regulated river level have become
permanently inundated rather than fluctuating with the changing levels of the pre-
regulated river. In the Lower Murray, the reduction in frequency and duration of floods
has meant that wetlands situated at higher elevation on the floodplain do not become
inundated as frequently as they would have under natural conditions.  When flood
conditions occur, the duration of inundation is significantly reduced.  Within the
constraints of river regulation, local wetland managers are actively managing wetlands
to reinstate natural flooding regimes and prevent large carp from entering their
wetland.  To achieve this they use flow and fish control structures at the wetland inlets.  

Wetland inlet structures in the Lower Murray vary in size and dimensions, largely as a
result of the absence of guidelines for construction and an ad hoc approach to their
design and management.  They range from a single 5m long x 70cm diameter pipe
with fish screens, to a five laned box culvert structure (each culvert being 1.5 x 1.5m)
with a central lit passage.

To date, the construction and consequent management of these fish and flow control
structures has been carried out with limited knowledge of their impacts on the passage
and recruitment of native fish.  Current management has raised community concerns
about the exclusion of all large fish from wetlands, with anecdotal information
suggesting wetlands are an important part of fish habitat.  There are presently no
guidelines or recommendations with sound supporting evidence for or against the use
of such structures.  Through the current project’s research we seek ways to gain
evidence of the effect of flow control structures and fish gates on fish movement, and
determine methods to discourage the passage of carp (Cyprinus carpio), whilst
promoting the movement of native species. By experimenting with different structures
and monitoring the results, we aim to make recommendations for optimal design of
new structures and management of existing structures.

But, as reminded by Northcote (1998) we need to think beyond the immediate issue of
fish passage.  He suggests that in addition to considering fish movement, developing
optimal habitats is critical for improving management of fish populations (Northcote
1998).  By supporting wetland managers who aim to establish more natural
hydrological conditions, and thereby improve habitat this project heeds Northcote’s
advice, and will encourage fish passage into wetlands of greater habitat value
(Northcote 1998).
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Status of knowledge of Murray-Darling fish

The ecology of fish and subsequent research into fish biology is a relatively new field in
Australia (Pierce 1992).  The biology of Australia’s freshwater fish fauna is basic at best,
with little known about the ecological significance of fish passage obstructions (McNee
2000, WAEPA 1987).

There is a commonly held view that fish (whether larvae, juvenile or adults) native to
the Murray-Darling Basin use the inundated floodplain as habitat during flooding
periods.  There is however little evidence to support this (Humphries et al. 1999).
Similarly, the relative importance of main river channel habitats to fish reproduction and
recruitment is poorly documented (Humphries et al. 1999).  Despite this, the perceived
association between fish productivity and access to floodplain habitats during flooding
flows remains (Welcomme 1985).  This concept is the basis for the application of the
Flood Pulse Concept applied to the Murray Darling River system.

The Flood Pulse Concept was first proposed for tropical riverine systems (Junk, et al.
1989), and applied to the Murray Darling Basin by Walker and Sheldon in 1992.  Walker
and Sheldon (1992) stated there was a tendency for investigations to underestimate the
significance of flooding to aquatic riverine communities.  They suggest that flooding is
the major force driving the Murray-Darling riverine ecosystem, with the entire floodplain
community’s productivity and biomass directly dependant on the flood pulse (Walker
and Sheldon 1992).  

Due to the major impacts of river regulation on flood dynamics, this reliance on the
flood pulse to recruit and increase biomass was therefore suggested as a reason for the
decline in native fish populations in the Murray (Walker and Sheldon 1992).  The
decreased occurrence of small to medium floods would probably limit the recruitment
of fish that rely on wetlands for spawning, nurseries and larval growth (Walker and
Sheldon 1992).

Recruitment hypotheses

It was also thought that flooding may aid species that live and possibly breed in the
main channel, through the input of nutrients and plankton assemblages from the
inundated floodplain and wetlands (Walker and Sheldon 1992).  This part of the Flood
Pulse Concept was expanded by (Humphries et al. 1999) who proposed three life history
models for native fish advantaged by high flows, and a fifth, the Low Flow Recruitment
Hypothesis that suggested flooding was unnecessary for recruitment and survival of
some Murray-Darling fish species:

1. Flood/High Flow Advantaged Mode
The first life history scenario is attributed to predominantly larger species, such as
Murray cod (Maccullochella peeli), trout cod (Maccullochella macquariensis) and catfish
(Tandanus tandanus), but also includes the river blackfish (Gadopsis marmoratus).  These
fish tend to only spawn once a year in late Spring/early Summer.  Spawning at this time
may coincide with flooding, but is not triggered by it.  Coincidence with floods would
provide a distinct advantage for larvae and juveniles, as this would provide an additional
food supply when plankton is washed into the mainstream. 

2. Flood/High Flow Related Mode
The second scenario applies to the relatively large species such as golden perch
(Macquaria ambigua) and silver perch (Bidyanus bidyanus).  These species spawn only
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once, in late Spring, early Summer, however can delay spawning until appropriate
conditions are present.  Spawning in these species is thought to be linked to rises in
flow and later flooding, and therefore also related to changes in temperature.  A larval
period exists for these fish, requiring a reliable source of food that would be supplied in
high densities in backwaters that held water for longer periods of time.  This life history
is the same as the traditional views held in the Flood Pulse Concept.

3. Flow Independent, Repeat Spawning Mode
This mode applies to fish such as the Australian smelt (Retropinna semoni) and flathead
gudgeon (Philypnodon grandiceps).  These species are mostly small and repeatedly
spawn from Spring to early Autumn.  Spawning is thought to be unrelated to flow,
although a threshold temperature may be required.  The larvae of these fish possess a
small gape size and start feeding around 2-3 days after hatching.  The larvae therefore
rely on high densities of small prey (eg phytoplankton) for their first feeding (they
therefore may also be advantaged by high flows accessing temporary wetlands and
producing high plankton densities).

4. Flow Independent, Single Spawning Mode
Members of this mode are also generally small fish, and include carp gudgeons
(Hypseleotris spp.), Galaxias (Galaxias spp.), crimson spotted rainbow fish (Melanotaenia
fluviatilis), and southern pygmy perch (Nannoperca australis).  These fish breed late
Winter / early Spring or Summer for about 2 months.  Their larvae’s small gape size also
rely on small prey (such as microinvertebrates or algae) for their first feeding.

5. Low Flow Recruitment Hypothesis
This mode represents a major diversion from the established Flood Pulse Concept.  This
theory rationalises that in addition to high flows, there are also low flows occurring in
the variable Murray-Darling system.  Since it appears that some fish have adapted to
flooding in this system, it seems appropriate that some species would take advantage of
low flow periods to complete their life cycles.  This theory follows that at low flow
periods, phytoplankton and zooplankton densities are greater due to the smaller volume
of water present, its greater residence time and higher temperature.  Species that spawn
during the low flow periods are therefore advantaged, as a ready supply of food is
available for their larvae and juveniles.  A disadvantage associated with this strategy is
that these species could be affected by poor dissolved oxygen levels and increased
solute concentrations, such as salt.

As with the Flood Pulse Concept, little evidence exists to prove or disprove this theory.
However, a recent study by (Mallen-Cooper 1996) suggests that native fish recruitment
was greater during periods when waters were confined to the main stream.

Despite the uncertainty regarding reproductive modes, it is generally acknowledged
that many of Australia’s native fish are “potadromous”, only migrating within the river
system (WAEPA 1987, Harris et al. 1998).

A definition given by Northcote (1998) explains that migration “usually involves, at some
stage in the life cycle, both upstream and downstream movements to reach the appropriate
habitats”.  The fact that this definition refers to both upstream and downstream
movement is important, because to date most of the information collected on migration
has focussed on upstream movements.  The reason for this is unclear, but may be a
response to the focus of research primarily on commercially or recreationally important
species (Northcote, 1998).  Overall, there remains a lack of information on the
capabilities, behaviour and migratory requirements of native species (Northcote, 1998).
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Current knowledge of fish movement

Little is known about the downstream movement of fish, how barriers affect
downstream movement, when it occurs and what the environmental or behavioural
cues are.  It is generally assumed that downstream movement is a form of “passive
drift”, due to the susceptibility of early life stages (eggs or larvae) to displacement by
flows (Harris 1985, Northcote 1998).  Further studies are required to determine the
effects of mainstream weirs and floodplain barriers on this downstream migration of
native fish (Humphries et al. 1999).

Similarly, there has been a focus on longitudinal movement of fish within the
mainstream, whilst the lateral movement of fish onto and off of the floodplain and its
wetlands, and how these movements differ in response to flow, other environmental
variables or behavioural cues (Humphries et al. 1999) remain a mystery.

Lateral movement of native fish remains a “vexed question” (Humphries et al. 1999).  A
recent open forum on fish passage in Australia (All Participants 1992), identified the
need to investigate fish movement onto and off the floodplain in relation to changing
water levels, and the effects of levee banks {culverts and causeways} on this movement.

If we are to manage and conserve the Murray-Darling’s (and Australia’s) fish fauna, it is
essential that we understand how the biology of native and introduced fish is influenced
by flow, within both the main channel and the floodplain (Humphries et al. 1999).

Mallen-Cooper (1994) notes that it is critical to understand fish behavioural patterns
and swimming abilities in order to design effective fishways.  This information is of
equal importance to ensure that flow and fish control structures on wetland inlets do
not inhibit the free passage of native fish.  The management and construction of
wetland inlet structures need to take into account the requirements of native fish to
complete their life cycles.  Although this project is primarily focused on the small scale
(localised) lateral movement and the use of wetland habitats by fish, if fish do use
floodplain wetlands, then it also becomes important to consider large scale migrational
movement especially at times critical for native fish reproduction.  Existing information
for fish found in the Lower River Murray is summarised in Table 16.

Longitudinal Fish Movement
Fish may move for any number of reasons, however in the Murray Darling Basin
movement is largely related to spawning and dispersal (Humphries et al. 1999).  As
highlighted in the previous section, research to date has focused on longitudinal, rather
than the lateral movement of fish within the Basin.  

The upstream migration of fish is generally dominated by juveniles and includes large
native species such as callop, silver perch, Murray cod and smaller species like Australian
smelt (Humphries et al. 1999, Mallen-Cooper 1994). The upstream migration of
freshwater fish is influenced by temperature, photoperiod, water level and the presence
of food (Humphries et al. 1999) and tends to take place as floodwaters arrive and water
temperatures increase during spring and summer.  For many Murray-Darling fish,
migration can occur during flood and non flood years, however spawning may be
variable if flooding conditions do not prevail (see Table 16 for details).  Carp are also a
migratory species whose migratory habits are characterised by short random
movements that are unrelated to spawning (Humphries et al. 1999, Reynolds 1983).
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Localised and Lateral Movement
Localised fish movement, be it lateral or longitudinal, can be influenced by local water
quality or light conditions.  In wetlands in the Lower River Murray that are currently
being managed with fish and flow control structures it is possible to influence these
conditions.  (Koehn and Burchmore 1993) identified turbidity, salinity, temperature and
dissolved oxygen as factors that influence the physiology and behaviour of fish.  Salinity,
turbidity and dissolved oxygen levels in wetlands are related to the management of the
water regime.  For example, if wetlands are left to dry during spring - summer when the
germination of plants on the dry lake bed is rapid and abundant, the breakdown of
abundant plant matter will influence the dissolved oxygen levels in the wetland as it re-
fills.  Conversely if a wetland is dried during cooler months plant growth would be less
abundant and have less impact on the water quality as the wetland re-filled.  The poor
water quality prevailing in the wetland (ie. low oxygen levels) would, as suggested by
(Humphries et al. 1999) make it undesirable for the larvae of callop and possibly other
species and influence their distribution and use of the wetland habitat.  

Light conditions have also been identified as affecting localised fish movement.  Adult
callop and silver perch were recorded by (Gehrke 1990) as swimming towards a light
source.  Such observations have implications for structure design.  It has also been
noted that bony bream (Nematolosa erebi) did not move through tunnels (Mallen-
Cooper 1994).  Although this observation may be related to turbulence and or velocity
at the structure, it is feasible that their movement may have been influenced by the
absence of a lit passage.  

Several native fish species have been recorded moving through mainstream fishways
during the day (bony bream, silver perch, and Australian smelt), with callop moving
predominantly during dawn and dusk (Mallen-Cooper 1992, Mallen-Cooper 1994).
Longitudinal day-night movement is well documented, however day-night movement
onto and off of the floodplain is not.

Pilot research at sites in the Lower Murray recorded callop, bony bream, carp gudgeons
and fly specked hardyheads (Craterocephalus stercusmuscarum) moving onto the
floodplain exclusively during the day.  The exotic species - goldfish (Carassius auratus)
and carp were noted moving off of the floodplain exclusively during the night (Pierce
1997).  If these findings are observed under a range of flow conditions, there are likely
to be opportunities to confidently manage fish control structures to encourage the
passage of native fish whilst excluding exotics.

Apart from a few studies (Pierce 1991, Pierce 1997), the localised movement of fish into
and out of wetlands and the floodplain is largely undocumented.  Preliminary findings
from a study conducted in Lake Littra, a temporary lake on the Chowilla floodplain in
the Lower Murray demonstrate the patterns of fish migration out of the wetland.  After
breaching a temporary bank that held water in the wetland post flooding over 90% of
the fish in the wetland migrated out during the first 48 hours (Pierce 1991).
Furthermore, virtually all of the adult carp migrated out of the wetland during this
period (Pierce 1991).  Contrary to these observations, (Wilson 1999) noted that carp
moved onto the floodplain 2-3 days prior to the native fish and as water levels dropped,
stayed after the natives had migrated out.  Further investigation and conformation of
these findings would provide excellent opportunities to refine the management of fish
control structures on wetland inlets (Wilson 1999).

Despite what is known, there are still significant gaps in our basic knowledge of Murray-
Darling fish biology (Table 16).  To further complicate current knowledge (Humphries et
al. 1999) pp. 131 note that “studies of life history traits, spawning cues, movement and
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migration, habitat use and recruitment vary widely among species and may not even be
consistent for one species across different regions”.  To take the management of
wetland inlet structures forward, we assume that the migration and habitat
requirements of fish summarised in this review are consistent for the Lower River
Murray. 

Habitat use by fish

Due to the confines of their surroundings, freshwater fish are more dependant on their
habitat than marine fish (Koehn 1992), making them more susceptible to habitat
changes occurring within a river system.

Changes to river and wetland habitat through river regulation can have disastrous
effects for the survival of native species by breaking the links between the floodplain and
the river channel (Gehrke et al. 1995) through changes to environmental stimuli, aiding
the colonisation of aquatic habitats by introduced species, and prohibiting access to
areas as a result of the installation of physical barriers (weirs, dams, water control
structures: Gehrke et al. 1995).

A diversity of habitats is essential to the suite of native species in the Murray-Darling
Basin, and to individual species at different stages of their life cycles (Koehn 1992).

Current information on fish habitat use is summarised in Table 1, with the key
information outlined below:

Mainstream
The mainstream of any river provides the focus of the system’s energies: acting variously
as a source, sink and conduit for water, nutrients and biological matter.  

The main river channel also provides migration paths for many species undertaking
longitudinal migration as part of their breeding cycle or colonisation of new habitats
(Gehrke et al. 1995).  It is for this reason that concern has been so great regarding the
effect of mainstream barriers such as weirs and dams (Gehrke et al. 1995).  In addition,
regulation of the mainstream flows has changed the nature of both mainstream and
wetland habitats – both directly through habitat modification, and indirectly by
promoting better conditions for introduced species (Gehrke et al. 1995).  Several studies
have shown that with a greater degree of river regulation, the lower the fish species
diversity the river will have (Gehrke et al. 1995).

Until recently little attention has been given to the significance of mainstream habitats –
especially for rearing juveniles (Humphries et al. 1999).  This is despite several species
having no apparent relationship between high flow and maturation, spawning or
rearing of young, and knowledge that the larger species – callop, silver perch and
Murray cod – generally prefer the river environment (Humphries et al. 1999, Harris and
Rowland 1996, Merrick 1996) and successfully spawn in the main river channel
(Cadwallader 1977), sometimes on mass over a short period of time (Humphries, et al.
1999).

These observations led to the proposal of the “low-flow recruitment hypothesis”
discussed above which suggests that several species are adapted to the river
environment, spawning and recruiting at times of low flow (Humphries et al. 1999).
This hypothesis is compatible with findings from several studies including Lloyd and
Walker (1986), who found species diversity to be greater for “river edge” sites rather
than “backwater”, “billabong” or “stream” habitats (Lloyd and Walker 1986). 
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Species Name Name Key Habitat Mig? Mign habits Mign Season Mign Cues Day / Night Mvt Spawning location Spawning cues Spawning time Type of spawning Other  

Maccullochella peeli Murray Cod Mainstream4, Y10,3,6 upstream for spawning10,3,6, Sum, Aut & Win flood & non +/- 1-2 weeks of Oct-Dec4 single spawn4 Cod generally don’t move
anabranch creeks6 not all move at same time, (local mvt) flood years flood peak14, approx onto floodplain6, fishermen

same pattern every year6 Win/ Spr annually, rise in river, never caught juvenile cod
(major mvt)6 min temp4 in billabongs or flood plain14,6,

young caught in low flow 
habitat near spawning site14,3, 
young only caught in river 
channel6, migrate upstream 
120km6

Maccullochella  Trout Cod Mainstream4 Y6 upstream for spawning22,6 major flood (1993)6 approx annually,  Oct-Dec4 single spawn4

macquariensis with fast current12 min temp4

Macquaria ambigua Callop /  Mainstream4, lake, Y10 upstream mign of juveniles     Spr / Sum9 temp >16C11, move at dusk & dawn8, can spawn risingwater level, Oct-Mar4 variable single spawn4 250mm water level drop=drop
Golden Perch anabranch12 adults & sub adults 10,11,14 strong diel mvt8 move onto floodplain on floodplain5 min temp4 in spawning in SA, density

continue mign with falling in day16, swim towards related to high DO1, can
water levels11, sub adults light source1 travel up to 1000km 
preferentially use floodplain upstream9, attracted to 
during high flows15, adult chemicals released by
fish swim towards light16, redgums3

young move downstream
independent of light7

Nematolosa erebi Bony Bream /  wide range of habitats,  Y10 upstream10, continue mign flood & non flood11,  day mvt9, move onto  backwaters, before rise Spr-Sum22 single spawn22 juveniles use floodplain,
Bony Herring mainstream – wetlands22 with falling water levels11 temp >16C11 floodplain in day16 in flow4, can spawn did not move through tunnels9

on floodplain5

Bidyanus bidyanus Silver Perch fast flowing waters23 Y3,9 upstream mign of juveniles3,9, Spr / Sum9 small rise in water day mvt9, swim can spawn on rising water level, min. Oct-Mar4 variable single spawn4 travel up to 500km upstream9

continue mign with falling level9, temp >16C towards light source1, floodplain5 temp4

water levels11 young move downstream
independent of light7

Tandanus tandanus Freshwater  anabranch / lakes  N3 shallow parts of main approx annually, min Oct-Dec4 single spawn4

Catfish (low flow conditions)24 river / quiet backwaters4 temp4

Hypseleotris  spp. Carp  permanent wetlands4,25 N25 move onto floodplain   Late Win / Sum4 short single spawn4 uncertain spawning cues4

Gudgeon in day16

Melanotaenia Rainbow Fish rivers, creeks, wetlands  N26 stimulated by warm  Spr - early Sum26 short single spawn4 uncertain spawning cues4

fluviatilis (low flow conditions)4,26 temps26 over several days26

Retropinna semoni Australian permanent wetlands4 Y3 upstream migration3,  Spr / Sum in  small rise in water day movement9 around 15oC27 Oct-March4 long, repeat spawn4 uncertain spawning cues4

Smelt (low flow conditions)27 juveniles migrate upstream9 SA9,27 level9

Philypnodon spp. Dwarf Flathead anabranch/lakes Y3 nothing known about 
Gudgeon (low flow conditions)25 breeding25

Philypnodon  Flathead  anabranch/lakes  N25 Spr - Sum25 long, repeat spawn4 spawning cues uncertain4

grandiceps Gudgeon (low flow conditions)25

Ambassis castelnaui Western  river, creek & wetland28 N28 approx. temp. 23oC28 Nov & Dec9

Chanda Perch

Craterocephalus  Fly specked  anabranch/lakes (still -  N29 move onto floodplain Mid Oct. -  long breeding season29

stercusmuscarum Hardyhead gently flowing water)29 in day16 Mid Feb29

Craterocephalus  Murray little known, likely N29

fluviatilis Hardyhead habitat, still - gently 
flowing water29

Nannoperca  Southern  anabranch/lakes        late Win / Sum4 short single spawn4 uncertain spawning cues4

australis Pygmy Perch (low flow conditions)30

Table 16. Summary of existing literature on fish habitat requirements, movement, and spawning cues for fish found in the Lower River Murray.
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Species Name Name Key Habitat Mig? Mign habits Mign Season Mign Cues Day / Night Mvt Spawning location Spawning cues Spawning time Type of spawning Other  

Perca fluvialitis* Redfin Perch still-gently flowing  N31 temp.> 12oC31

water31

Gambusia holbrooki* Plague wide range of habitats32 N3 All warm months   repeat spawning,  wide range of environmental   
Minnow / (peak in spring)32 live bearer32 tolerances19

Mosquito fish 

Carassius auratus* Goldfish  N3 move off floodplain at    Sum33

night16

Cyprinus carpio* Carp dislike steep drop offs Y17 upstream, short random Spr / Sum flood & non flood11, move off floodplain shallow water <30-40cm lengthening photo Spr / Sum18 single major spawn13 juv carp out of nursery within
& course habitat21, mvt17, mign unrelated to rise in water temp at night16 deep20 period, temp. 12 months17, carp move onto
juvenile carp use spawning11, primarily & increases in river increase >17oC, floodplain 2-3 days before

floodplain2, prefer migrate during low flow level stimulate rising or stable water13 natives & stay after natives have 
shallow low flowing years11 upstream mign 11 left17, spawn at lower temps.
habitats33 than natives thus earlier in

season20
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15 (Pierce 1992)
16 (Pierce 1997)
17 (Reynolds 1983) 
18 (Smith 1999)
19 (Vargas and de Sostoa 1996)
20 (Wilson 1999)
21 (Dooland et al. 2000)
22 (Briggs and McDowall 1996)
23 (Merrick 1996)
24  (Pollard et al. 1996)
25 (Larson and Hoese 1996)
26 (Allen 1996a)
27 (McDowall 1996a)
28 (Allen 1996b)
29 (Ivantsoff and Crowley 1996)
30 (Kuiter, Humphries et al. 1996)
31 (McDowall 1996c)
32 (McDowall 1996b)
33 (Brumley 1996)

ABBREVIATIONS

Mig(n) = Migrate
Mvt = Movement
Spr = Spring
Sum = Summer
Aut = Autumn
Win = Winter
Juv(s) = Juvenile(s)
Temp(s) = Temperature(s)
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It is therefore feasible that “river improvement” activities such as snag removal,
channelisation, and removal of riparian vegetation could have a profound effect on
riverine fish fauna – especially those species that are directly reliant on physical features
for protection, spawning sites, or orientation within their range (Cadwallader 1978,
Koehn 1995).

Wetlands
There is a general lack of information relating to wetland and floodplain use by fish.  It
is thought however, that for many species, wetlands provide feeding, spawning, and
nursery areas (Koehn and Burchmore 1993), and that a range of fish species use
different floodplain habitats at different times and life stages (Humphries et al. 1999).
Despite this view, few studies have shown evidence that adult or larval fish use
non-permanent floodplain habitats in the wild (Humphries et al. 1999).

There is also a lack of distinction between the inundated floodplain and temporary
wetlands in the literature, making it difficult to determine fish usage for the different
habitats.

There are two main wetland types in the Lower Murray.  Permanent (those filling at
regulated river level), and temporary (wetlands that fill during high flow conditions).  It
is probable that permanent wetlands have permanent localised fish communities that
do not undergo immigration or emigration (Humphries et al. 1999).  Examples of
species commonly found in permanent wetlands include gudgeons, rainbowfish and
Australian smelt (Humphries et al. 1999).  There are also likely to be fish that migrate
between the wetland and mainstream.  Changing the water regime of permanent
wetlands is likely to significantly alter the make up of the permanent fish community.
This is supported by (Pierce 1997) who found that exotic species, such as redfin, carp
and gambusia, dominate permanent water at sites on the Chowilla Floodplain in South
Australia.  He suggests that native fish favour temporary waters and the inundated
floodplain, and that impounding temporary wetlands to create permanent water is
unfavourable, as it leads to a dominance of exotic species (Pierce 1997).

While catfish are often found in the mainstream environment, they have a preference
for slow flow conditions during spawning and have been observed using both wetlands
and low flow portions of the mainstream for this purpose (Humphries et al. 1999).
Similarly, bony bream also prefer backwaters and wetlands over mainstream habitats
(Humphries et al. 1999).  Bony bream have been recorded spawning in backwaters
during floods, but it has been observed that only juveniles use the floodplain (possibly
wetlands) proper (Humphries et al. 1999).

Floodplain
Use of the floodplain by native fish is also largely unresolved due to lack of information,
particularly the nature of feeding on the floodplain by native fish (Humphries et al.
1999).  There is little confirmatory evidence of the use of temporary habitats by fish
larvae, juvenile or adults, although there is a perception that the inundated floodplain is
an important habitat (Humphries et al. 1999).  Similarly, there is insufficient data on
whether the densities of microinvertebrates are higher on the floodplain compared to
the mainstream, and whether these densities can support fish larvae (Humphries et al.
1999).  Plankton blooms on the floodplain, resulting from the new availability of
nutrients, are thought to be a source of food for larval and juvenile fish of species such
as silver perch, callop, bony bream, and spangled perch that can spawn on the
floodplain (Koehn and Burchmore 1993).
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There is evidence to suggest that sub adult callop prefer temporary floodplain water to
the permanent backwaters and preferentially use floodplain areas during high river flows
(Pierce 1991, Pierce 1992).  Similarly, (Geddes and Puckridge 1988), found that
accumulation of juvenile bony bream at the flood fringe occurred in the Cooper Creek
system, suggesting that this habitat is important for younger age classes of this species.
In addition, (Koehn 1995) called for the protection and enhancement of riparian
vegetation due to its use as habitat under high flow conditions, and the protection it
provides for juvenile fish (especially), given that juvenile fish can be displaced by flows
as little as 150mm/second (Pierce 1997).  Furthermore, these findings indicate that
barriers (such as levee banks, road culverts and possibly flow control structures on
wetland inlets) on the floodplain have the potential to disrupt movement of sub adults
and potentially cause fish kills (Pierce 1992, Geddes and Puckridge 1988).  

Current knowledge suggests that use of the floodplain may only be restricted to periods
of high flow, as the habitat may not be suitable for native fish during small scale
inundations that occur under regulated conditions (Gehrke 1990; Gehrke 1991).  This
viewpoint has been reiterated by several authors, who claim that fish movement along
floodplain channels only occurs during times of “measurable” flow (Pierce 1991), and
when the connection between the river and the floodplain habitat is strong (Humphries
et al. 1999).  Once the connection between the river and floodplain appears to be
weakening, native fish move back to the mainstream or anabranches (Humphries et al.
1999).  A fish survey during a Spring flood that covered most of the floodplain of the
Murrumbidgee catchment, recorded few fish on the floodplain except large numbers of
juvenile carp that were found in the lake habitat of Green Swamp (Gehrke et al. 1995),
throwing doubt onto the use of the floodplain by any fish at any flows (large or small).

The question of whether water quality conditions on the floodplain are favourable to
native fish during flooding remains (Humphries et al. 1999).  Low dissolved oxygen
concentrations and high tannin concentrations make the environment unattractive to
many fish (especially the younger stages), although the opposite is true for some fish
(eg. callop) (Humphries et al. 1999).

It is clear that more research is required into the timing and conditions required for fish
to move onto (and use) the floodplain.  The swimming ability of fish will determine the
conditions under which it is possible for fish to move.  Current information is detailed in
the following section.  

Swimming ability of Australian fish

Most of the research on fish swimming abilities in Australia relates to fishways and the
ability of fish to move through them.  In South Australia there is only one such fishway,
located on the mainstream River Murray channel at Weir Six (of vertical slot / baffle
design) near the South Australian border.

Early designs of these structures are based on overseas structures, which usually aimed
to allow the passage of Salmonid fish during their annual migration.  Australian native
fish are different from Salmonids, generally being slower and smaller, most lack the
ability to leap, and live in streams or rivers with a naturally greater seasonal fluctuation
in water level (WAEPA 1987).  The importance of understanding swimming abilities of
native fish is that it provides an indication of their ability to overcome water velocities
and head differences.  This information is useful for managing wetland structures, for
example when fish attempt to move against the current when a wetland is draining, or
the wetland becomes part of a larger flow path during a flood, and therefore acts as
part of a migration route.
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As with Australian migration studies in general, fishway studies have focussed on fish
movement against the current (upstream), the behaviour of downstream migration is
poorly understood and often regarded as occurring by passive drift (Northcote, 1998).

Most fish differ in their ability to swim against a current, with size-dependant changes
within a species (Gray 1953, Bainbridge 1958 in Northcote 1998).  The swimming
speed of fish is estimated at between 9 and 21 body lengths per second, however this is
largely based on Salmonids (Mallen-Cooper 1994).  At these rates, using burst speed
swimming, the fish’s white muscle power is used.  The use of white muscle can not be
maintained for longer than approximately 10-15 seconds, after which the red muscle is
employed for sustained swimming (Northcote, 1998).  This becomes the limiting factor
in a fish’s ability to traverse a differential head or escape predation.

During monitoring of three weirs, (Mallen-Cooper 1992) observed large numbers of sub
adult callop moving upstream during high flows (Mallen-Cooper and Harris 1992).  The
sub adult fish were able to pass through head losses of up to 53cm (at a flow of 14,100
ML/day) at Brewarrina Weir, a head loss of less than 50cm (at a flow of 10,000 ML/day)
at Bourke Weir, and a head loss of less than 10cm at Menindee Weir (Mallen-Cooper
and Harris 1992).

Adult callop (44cm) and silver perch (25cm) have also been recorded moving through a
vertical slot fishway when water velocity was 1.8m per second or less (Mallen-Cooper
1994).  However movement is not only restricted to large fish, with small fish such as
Australian smelt and gudgeons recorded moving through fishways on the east coast
(Mallen-Cooper 1994).

Of species introduced to the Murray, the only information available relates to carp,
although this is also minimal (Dooland et al. 2000).  In general, most Cyprinids have
been noted to have poor leaping and swimming abilities to overcome small rises or
areas of rapid water movement (Northcote, 1998).  However, carp have been reported
to jump heights of 1m (Merrick and Schmida 1984, Tucker 1999).  Australian native fish
have not been recorded as jumping to such an extent (WAEPA 1987).  Despite their
apparent enhanced jumping ability, it is believed that carp and native fish have similar
swimming abilities (based on fish of similar body size) (Mallen-Cooper 1994).  Therefore
any structural enhancement to a fishway or flow control structure that prevented carp
movement based on their swimming ability, would also prevent most native fish
movement (Vilizzi 1997).  If discrimination against carp is required, it may be useful to
investigate behavioural characteristics rather than swimming ability (Dooland et al.
2000).

Wetland rehabilitation projects

Over the last ten years in South Australia there has been a movement in wetland
rehabilitation to implement drying cycles on permanently indundated wetlands and wet
droughted wetlands for longer periods of time during high river conditions.  The
premise behind implementing wetting and drying regimes is to replicate the natural
flood - drought conditions that would have affected wetlands prior to river regulation.

By drying permanent wetlands out for periods of time, sediment can become
consolidated, nutrients can become fixed, and dry phase vegetation can become
established, creating structural diversity and an additional food source for
macroinvertebrates and fish once the wetland is re-wet.  By keeping droughted
wetlands wet for longer periods, aquatic vegetation, invertebrates and fish are given the
chance to complete their life cycle, riparian vegetation is maintained, and long lived
vegetation are given a reprieve from long term drought conditions.
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In order to manage water to and from wetlands flow control structures are installed on
wetland inlet and outlets.  To date these structures have been designed and installed in
an ad-hoc fashion based on available knowledge, materials, and (often most
importantly) funds.  This has led to many different structure types being installed as part
of approximately 20 established rehabilitation projects, and with over 90 more
proposed (Goodman 2003).

Structure types used include large and small box culverts, pipe culverts of varying
dimensions, and open-topped box culverts.

Wetland inlet structures: impacts on fish movement

As early as the 1970’s, it was recognised that 11 species of Australian freshwater fish
were seriously threatened or considerably reduced in distribution as a result of dams and
weirs blocking migration paths (Lake 1971cited in Northcote 1998).  In South Australia,
the construction of the Torrens Weir has been implicated in the extinction of the short-
headed lamprey and the decline in Congolli numbers from this river (Pierce 1992).

Just as large regulating structures need to provide adequate fish passage for the
upstream and downstream movement of fish (Koehn 1995), wetland inlet structures
need to provide fish passage into and out of wetlands during low flow conditions.
During high river flows these wetlands may begin to form part of a fish migration route,
however, at this time the structures are ‘decommissioned’ as they are overtopped by
flood waters.  Overseas and Australian studies have focused on fishway construction in
streams and rivers.  These studies have shown that there are a number of changes
produced by structures that are likely to influence fish passage.  These factors include:
flow rate, high turbulence and velocity at and within the structure, water quality (such
as turbidity, temperature and dissolved oxygen levels), water depth in the culverts, noise
and light conditions (Koehn and Burchmore 1993, WAEPA 1987, Bates 1997, Mallen-
Cooper 1996).  As with large regulating structures, culverts at wetland inlets alter the
‘natural’ physical conditions of flow into the wetland.  On this smaller scale, it is unclear
if and how, fish movement is affected by these structures.

Wetland inlet structures can present a physical barrier to fish, preventing or limiting
movement of different species and size classes through the structure due to physical
swimming abilities or behavioural preferences (Harris 1985).  Structures may also alter
the local water quality through increasing water velocity, turbulence and noise, or
changing water oxygenation and temperature so that the structure surrounds are
unsuitable to some or all fish (WAEPA 1987, West 1992).  Similarly, unsuitable design or
location could see fish being “instinctively reluctant” to enter into the unnatural
environment of a culvert (Lugg 1997), or into a naturally or man-made fish “danger
area” (Mallen-Cooper 1992).

Precluding fish movement through a structure can cause congregation of fish on one
side or the other, leading to delays in migration (and possibly spawning), and possibly
death through increased predation or competition from other species (Harris et al.
1998).

Correct management of structures can often lead to an improvement in fish movement,
and given fish movement may only occur at certain times (Pierce 1997), management
of the structures may be as important as the design of the structures themselves
(Dooland et al. 2000).
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In a perfect world, structure design and management would allow free passage of
native fish through all engineered structures.  In order to achieve this, however, we
must expand our knowledge of the swimming ability and behavioural characteristics of
Murray Darling fish.

There are generally two parts to wetland inlet structures: flow control structures, that
control water movement into and out of wetlands; and fish control gates that aim to
limit exotic fish access to the wetlands.  Many flow control structures have been
installed throughout Australia, each consisting of culverts and screens of varying
dimensions.  Due to the nature of South Australian wetlands, nearly all managed
wetlands in this section of the River Murray are fed from inlet creeks that connect to the
mainstream.

1. Flow Control Structures
Velocity is one of the key abiotic factors that influence fish movement, whether in the
mainstream, through a fishway, or through a wetland control structure.  It has been
shown in the mainstream of the River Murray that sub adult and adult native fish can
pass through fishways with water velocities of 1.8m per second (Mallen-Cooper 1994).
However, on the floodplain, juvenile fish were displaced by water velocities as low as
0.15m per second (Pierce 1997).  It is therefore important to design structures with a
range of fish species and life stages in mind to ensure all the fish that want to move can
move, and that those smaller species or life stages can survive the experience.

While unsubstantiated for Australian fish and Australian conditions, there are options
identified in American fish passage guidelines for reducing velocity at culvert structures
which could potentially be applied to wetland inlet structures after investigation into the
suitability to Australian fauna and conditions.  However, it is noted that by reducing
velocity, turbulence within the culvert may increase to create a further barrier to fish
passage (Bates 1997).

Options for managing velocity include: creating flow refuges within the culvert structure
by installing baffles, increasing the roughness of the culvert wall, or placing streambed
material on the culvert floor (Bates 1997).

As is the case in fishway design, conditions leading up to the entrance of a wetland inlet
(both upstream and downstream of the structure) may be equally important for the
passage of native fish as the design of the structure itself (Harris et al. 1998).  If there is
a steep gradient downstream of the wetland inlet for example, it will become virtually
impossible for fish to negotiate their way out of the wetland as the wetland drained or
dried.  Furthermore, extensive reed growth in the feeder channel either side of the
wetland structure could potentially limit fish movement before they reach the inlet
structure.  If this is the case, the design and management of the structure is irrelevant as
the fish are unable to reach it.

The way a fishway / culvert / flow control structure is managed will also influence the
ability of fish to move past these obstructions.  These changes may be no more difficult
than leaving the gates on a lock chamber ajar for a longer period than normal, resulting
in a forty-fold increase in the number of fish passed (Mallen-Cooper 1994).

Attractant flows are often used in fishway design to draw fish to the fishway entrance
and ensure unimpeded passage (Harris et al. 1998).  In the case of fishways, structure
leakage can lead to false attractant flows and delay fish from finding the correct
entrance (Harris et al. 1998).  Similarly, water used to provide attractant flows must be
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managed to provide the right cues for migration and spawning, or the structure
(although having the physical capacity to move fish) will remain inhibitive to fish
movement (Mallen-Cooper 1994).  In the case of wetland inlets where there is a head
difference between the inlet and outlet it would be possible to create attractant flows to
encourage fish movement out of the wetland before a drying cycle was to proceed.

It is important to manage structures correctly over a range of flow conditions, and
ensure fish passage (if required) is possible over the full range (Mallen-Cooper 1992).
Once a structure is “drowned-out” management of the structure is not possible.  It
must be ensured therefore that the structure itself does not form an obstruction during
this time (Mallen-Cooper and Harris 1992).  Regular maintenance of the structures and
fish screens will also minimise problems with debris collecting within or in front of flow
control structures and effectively blocking fish access (Northcote, 1998).

2. Fish Control Structures
Fish control structures (screen gates that attach to the flow control structures) have
been used in wetland rehabilitation projects over the last 10 years to control the
movement of large, breeding sized carp into wetlands in the Lower Murray.  Very little
research has been undertaken to determine the best options for designing these gates.
Assessment of the size, shape and orientation of the mesh that would best prevent the
passage of large carp is required to further refine their design and minimise the impacts
on large native fish who, by default, are also excluded.  Current management involves
setting the structures in place and leaving them for the duration of wetland opening
until river flows increase and native fish show signs of movement.

There have been no published data within Australia and few studies are cited in overseas
literature on the effects of fish control screens on native fish populations.  In the United
States one study investigated the use of three different screen types: circular, rectangular
and vertical bar grates to limit carp access, whilst allowing Northern Pike (Esox lucius)
access to a waterway (French et al. 1999).  It was noted during the study that the carp
were able to compress their abdomens to allow passage through circular openings
smaller than their height, and pass though rectangular grates by swimming diagonally
(French et al. 1999).  It was indicated that vertical bar grates were the most successful
for carp exclusion, as it appeared that the size of the fish’s head was the restrictive
factor in their movement (French et al. 1999).  These findings have implications for the
design of new fish control structures on River Murray wetland inlets, although it must
be ensured that native fish are not further disadvantaged by their use.  Similarly,
changes to the way the screens are managed may provide further options for carp
control.

It can therefore be acknowledged that our basic knowledge of habitat use by Australian
native fish, and of species introduced into the Australian system, needs to be improved
dramatically.  The impacts of large mainstream structures on fish movement and
migration within the main river channel are beginning to be addressed through the
installation of fishways or differing management protocol to enhance movement.

Similar moves are required to determine the impacts of flow control structures on fish
access to these areas.  Through monitoring fish movement at various locations, and at
different structure types, better management and construction techniques can be
developed to minimise the impacts of wetland rehabilitation projects on the native fish
fauna whilst simultaneously controlling introduced species.
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Appendix B. GPS location of nets.

Lake Littra

SITE NET EASTING NORTHING  

Lake Littra (Punkah Creek) 1 499717 6244214  
Lake Littra (Punkah Creek) 2 499650 6244188  
Lake Littra (Punkah Creek) 3 499468 6244165  
Lake Littra (Punkah Creek) 4 499397 6244165  
Lake Littra Inlet (mouth) none 499599 6244213 
Lake Littra Inlet (creek side) 5 500112 6244355  
Lake Littra Inlet (creek side) 6 500107 6244349       
Lake Littra structure 7 or 8 500107 6244363       
Lake Littra Inlet (wetland side) 9 500107 6244374  
Lake Littra Inlet (wetland side) 10 500102 6244374       
Lake Littra wetland 11 499997 6244535  
Lake Littra wetland 12 499897 6244553  
Lake Littra wetland 13 499738 6245686  
Lake Littra wetland 14 500102 6245456  

Werta Wert Lagoons

SITE NET EASTING NORTHING  

Werta Wert Creek (Monoman) 1 488756 6243583  
Werta Wert Creek (Monoman) 2 488791 6243509  
Werta Wert Creek (Monoman) 3 488795 6243375  
Werta Wert Creek (Monoman) 4 488696 6243311  
Werta Wert Inlet (mouth) none 488776 6243467 
Werta Wert Inlet (creek side) 5 488628 6243681  
Werta Wert Inlet (creek side) 6 488621 6243676       
Werta Wert structure none 488621 6243683       
Werta Wert Inlet (wetland side) 7 488615 6243694  
Werta Wert Inlet (wetland side) 8 488607 6243688       
Werta Wert wetland 9 488093 6245136  
Werta Wert wetland 10 487989 6245182  
Werta Wert wetland 11 488027 6245322  
Werta Wert wetland 12 488199 6245383  
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Chowilla Oxbow

SITE NET EASTING NORTHING  

Chowilla Oxbow creek (Chowilla) 1 487315 6239089  
Chowilla Oxbow creek (Chowilla) 2 487412 6239082  
Chowilla Oxbow creek (Chowilla) 3 487372 6238700  
Chowilla Oxbow creek (Chowilla) 4 487292 6238467       
Chowilla Oxbow inlet 5 487466 6239000  
Chowilla Oxbow inlet 6 487476 6238999       
Chowilla Oxbow wetland 7 487643 6238971  
Chowilla Oxbow wetland 8 487813 6239021  
Chowilla Oxbow wetland 9 487915 6239044  
Chowilla Oxbow wetland 10 487673 6238942  

Pilby Creek Lagoon

SITE NET EASTING NORTHING  

Pilby Lagoon River 1 492492 6241411  
Pilby Lagoon River 2 492660 6241283  
Pilby Lagoon River 3 492846 6240744  
Pilby Lagoon River 4 492710 6240697       
Pilby Inlet Mouth none 490373 6239833       
Pilby Inlet River side 5 490119 6239488  
Pilby Inlet River side 6 490129 6239474       
Pilby inlet structure 7 or 8 490094 6239473       
Pilby Inlet Wetland side 9 490062 6239483  
Pilby Inlet Wetland side 10 490072 6239466       
Pilby Wetland 11 489885 6239230  
Pilby Wetland 12 489899 6239004  
Pilby Wetland 13 489764 6238917  
Pilby Wetland 14 489733 6239188       
Pilby Outlet 15 489670 6239334  
Pilby Outlet 16 489683 6239341       
Pilby Outlet structure none 489660 6239381  

Lake Merreti

SITE NET EASTING NORTHING  

Ral Ral Creek (perm inlet) 1 477114 6233273  
Ral Ral Creek (perm inlet) 2 477100 6233220  
Ral Ral Creek (perm inlet) 3 476971 6233203  
Ral Ral Creek (perm inlet) 4 476931 6233205       
Merreti perm inlet (creek side) 5 477044 6233240  
Merreti perm inlet (creek side) 6 477036 6233238       
Merreti permanent structure 7 477046 6233260       
Merreti perm inlet (wetland side) 8 477035 6233338  
Merreti perm inlet (wetland side) 9 477028 6233354       
Merreti wetland 10 477244 6234843  
Merreti wetland 11 477257 6235600  
Merreti wetland 12 478168 6235590  
Merreti wetland 13 477982 6234707  

A
p

p
en

d
ic

es

What about the fish? – Improving fish passage through wetland flow control structures in the lower River Murray 121



Lake Merreti upstream inlets

SITE NET EASTING NORTHING  

Ral Ral Creek (temp inlet) 1 478913 6232512  
Ral Ral Creek (temp inlet) 3 478850 6232557  
Merreti top inlet (mouth) none 478868 6232542 
Merreti top temp inlet (ck side) 5 478875 6232567  
Merreti top temp inlet (ck side) 6 478873 6232578       
Merreti top temp inlet structure 7 478877 6232586  

Gurra Control Wetland

SITE NET EASTING NORTHING  

Gurra Creek 1 463068 6202579  
Gurra Creek 2 463125 6202490  
Gurra Creek 3 463070 6203262  
Gurra Creek 4 463046 6203168       
Gurra Control Inlet 1 463169 6202216  
Gurra Control Inlet 2 463155 6202257       
Gurra Control wetland 3 463216 6202235  
Gurra Control wetland 4 463352 6202054  
Gurra Control wetland 5 463289 6202111  
Gurra Control wetland 6 463213 6202185  

Little Duck Lagoon

SITE NET EASTING NORTHING  

Gurra Creek nets (as above) as above as above as above 
Little Duck Inlet (creek side) 5 462808 6203291  
Little Duck Inlet (creek side) 6 462808 6203291       
Little Duck structure 7 or 8 462790 6203305       
Little Duck Inlet (wetland side) 9 462809 6203321  
Little Duck Inlet (wetland side) 10 462779 6203308       
Little Duck wetland 11 462647 6203422  
Little Duck wetland 12 462549 6203572  
Little Duck wetland 13 462544 6203612  
Little Duck wetland 14 462689 6203499  

What about the fish? – Improving fish passage through wetland flow control structures in the lower River Murray

A
p

p
en

d
ic

es

122



Loveday Wetlands

SITE NET EASTING NORTHING  

Loveday River 1 443524 6208511  
Loveday River 2 443597 6208319  
Loveday River 3 443804 6208195  
Loveday River 4 443963 6208295       
Loveday Inlet (creek side) 5 443666 6208066  
Loveday Inlet (creek side) 6 443657 6208061       
Loveday structure none 443657 6208049       
Loveday Inlet (wetland side) 9 443660 6208028  
Loveday Inlet (wetland side) 10 443668 6208031       
Loveday wetland 11 443717 6207912  
Loveday wetland 12 443809 6207858  
Loveday wetland 13 443887 6207706  
Loveday wetland 14 443636 6207867  
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Appendix C. Entry pages for Access database.
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Appendix D. Engineering student’s journal papers

Year 2000 students: David Murchland, Kane Scott, Shannon Dooland, Jonathan Giesecke,
supervised by Martin F. Lambert and Keith F. Walker.

A ten-year record of fish passage at the Lock 6 fishway, River
Murray, SA.

David Murchland1,3, Kane Scott1,4, Shannon Dooland1,5, Jonathan Giesecke1,6, 
Martin F. Lambert1 and Keith F. Walker2

1Department of Civil and Environmental Engineering, Adelaide University, SA 5005.
2Cooperative Research Centre for Freshwater Ecology, Department of Environmental
Biology, Adelaide University, SA 5005.
3Present address: Arup Stokes, Adelaide 5000.
4Present address: SA Water, Adelaide 5000.
5Present address: Sinclair Knight Merz, Melbourne 3000.
6Present address: 

Abstract
Records from the Lock 6 fishway, on the River Murray near Renmark, South Australia,
identified differences in the environmental factors affecting fish movement at the
fishway.  The movement at the fishway of native species callop (or golden perch:
Macquaria ambigua) and silver perch (Bidyanus bidyanus), and the alien carp (Cyprinus
carpio) seems related to spawning and therefore to the movement of each species into
riverine wetlands.  Carp were found to be active only until December, whereas the
native fish activity was centred around January.  The influences of other factors including
water temperature, flow, and fluctuations in water temperature and level were
considered.  Management recommendations for managed wetland inlets in the region
were made with regard to the times of year at which screens should be employed.

KEYWORDS: migration, fish, carp, callop, silver perch, weir, wetland, river, Murray-Darling
Basin
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Wetland flow control and fish exclusion structures on the River
Murray, SA.

Jonathan Giesecke1,3, Shannon Dooland1,4, David Murchland1,5, Kane Scott1,6, Martin
F. Lambert1 and Keith F. Walker2

1Department of Civil and Environmental Engineering, Adelaide University, SA 5005.
2Cooperative Research Centre for Freshwater Ecology, Department of Environmental
Biology, Adelaide University, SA 5005.
3Present address: SA Water, Adelaide 5000.
4Present address: Sinclair Knight Merz, Melbourne 3000.
5Present address: Arup Stokes, Adelaide 5000.
6Present address: SA Water, Adelaide 5000.

Abstract
Wetland inlet structures are located on a number of wetlands along the River Murray to
exclude the common carp (Cyprinus carpio) and to manage a simulated flooding and
drying regime that would otherwise be permanently inundated in an effort to promote
the re-establishment of natural wetland ecosystems.  Existing structures exclude all fish
and have maximum filling velocities in the order of 1.9m/s.

Fish exclusion screens on these structures restrict the access of both native and exotic
fish species to the wetlands.  Management of the screens so that they are in place
during times of high carp activity, and removed when native fish movements are
greatest may serve to further promote a truly natural wetland ecosystem.

Filling velocities, obtained through hydraulic analysis of a structure at Causeway Lagoon,
should be slowed to reduce the amount of carp entering the wetland.  Existing
structures can be modified to reduce filling velocities by varying the structure materials
and finish, or by artificially increasing the downstream water depth.  In addition to these
measures, future structure should be constructed with a mild slope to reduce filling
velocities.  Velocities may also be reduce by undertaking the filling at low river levels.

KEYWORDS: wetland, fish, exclusion, carp, circular culverts, Murray-Darling Basin
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Swimming behaviour of common carp (Cyprinus carpio) in
relation to wetland inlets on the River Murray, SA.

Kane Scott1,3, David Murchland1,4, Shannon Dooland1,5, Jonathan Giesecke1,4

Martin F. Lambert1 and Keith F. Walker2

1Department of Civil and Environmental Engineering, Adelaide University, SA 5005.
2Cooperative Research Centre for Freshwater Ecology, Department of Environmental
Biology, Adelaide University, SA 5005.
3Present address: SA Water, Adelaide 5000.
4Present address: Arup Stokes, Adelaide 5000.
5Present address: Sinclair Knight Merz, Melbourne 3000.

Abstract
The swimming ability of carp was examined with regard for ways to discourage access
to wetlands linked to the River Murray via low-level flow regulators.  Carp of
302±94 mm total length (TL) had a burst speed of 2.6 m s-1, and their maximum
escape velocity was a function of body length.  Carp of 250-400 mm TL jump to
heights of about their body length, given a similar water depth. Jumping is non-
directional, and is encouraged by turbulence associated with high flows.  The fish face
into an induced flow and endeavour to swim against the current, but their endurance is
limited.  They are hesitant to leave darkened areas when presented with a dark/light
boundary, but they are gregarious, at least under laboratory conditions, and individuals
may excite groups of fish to act in unison.  Some wetland inlets on the Murray consist
of single or multiple culverts that would discourage carp migration under moderate flow
rates.  Carp appear to be indifferent to the presence of coarse rocky substrata near the
entrances to culverts.  The optimal configuration to discourage carp access to wetlands
is to employ a filling velocity of 0.4m/s, and to employ shallow, open topped box
culverts that allow light to penetrate the entire water column.  Turbulent conditions
should be avoided during filling, and fish screens (diamond grille 100x35mm) should be
employed at all regulated inlets, extending 400mm above the inlet water surface.  

KEYWORDS: carp, Cyprinidae, burst speed, swimming behaviour, fish passage, fishways,
fish attractors, Murray-Darling Basin



Year 2001 students: Timothy Champion, James Cox, Amy Ide, and Nadine Kelly, supervised
by Martin F. Lambert and Keith F. Walker.

Species-specific barriers: the response of carp (Cyprinus carpio)
to behavioural deterrents.

Timothy Champion1, James Cox1, Amy Ide1, Nadine Kelly1, Martin F. Lambert1 and
Keith F. Walker2.

1Department of Civil and Environmental Engineering, Adelaide University, SA 5005.
2Cooperative Research Centre for Freshwater Ecology, Department of Environmental
Biology, Adelaide University, SA 5005.

Abstract
Carp are responsible for degradation of riverine wetlands.  Current exclusion devices
consist of mesh screens that physically exclude all fish, including natives.  We
investigated behavioural responses of carp to light, sound, a bubble curtain, and a half
barrier in the laboratory, as an alternative means of excluding them from wetlands.  A
well-lit culvert entrance acted as a deterrent to carp passage, rather than a barrier.  Carp
responses to a speaker emitting frequencies of 5-1000 Hz indicated that sound of 20 Hz
is a deterrent.  Bubbles significantly reduced carp movement through the culvert and a
half barrier completely stopped them.  Field studies are required to assess the
effectiveness of these barriers in excluding carp from entering wetlands, while still
allowing native fish access.

KEYWORDS: behavioural barriers, fish deterrents, species-specific, carp, acoustic, light,
hearing, bubble curtain, wetland, Murray, culverts.
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Environmental conditions affecting migration of carp (Cyprinus
carpio) and callop (Macquaria ambigua) through Lock 6 fishway,
SA.

Nadine Kelly1, Timothy Champion1, James Cox1, Amy Ide1, Martin F. Lambert1 and
Keith F. Walker2.

1Department of Civil and Environmental Engineering, Adelaide University, SA 5005.
2Cooperative Research Centre for Freshwater Ecology, Department of Environmental
Biology, Adelaide University, SA 5005.

Abstract
Migration of fish through river systems is well known, and many fishways have been
built in the River Murray to reduce the impact of weirs on migratory paths.  The
introduced carp which can account for up to 90% of the fish biomass in some parts of
the Murray-Darling basin, has a devastating effect on riverine wetlands, by uprooting
native aquatic plants and displacing native fish.  In this study daily data on fish
movement, flow and temperature form Lock 6 fishway were analysed in an attempt to
differentiate between the migration cues of carp, and the native fish callop.  It was
found that carp migrate on an annual basis, stimulated by a rise in water temperature,
and that the migrations probably related to spawning, but rather driven by a need to
disperse and colonise.  In contrast, the migration of callop is not an annual event, but is
initiated by a rise in water levels, particularly floods, and is related to spawning.  The
relationship between migration upstream and into riverine wetlands for these fish is not
clear.  Further research is needed in this area to enable wetland managers to reduce the
impacts of carp on wetlands, while not severely restricting access to callop.

KEYWORDS: migration, fish, carp, callop, golden perch, Cyprinus carpio, Macquaria
ambigua, spawning, colonisation, fishway, fish passage, wetland, Murray, river.




