Farm energy forum

Energy Efficient irrigation

Dave O’Donnell
Irrigation energy costs in context

- 100 hectare irrigated pasture - two 8 span centre pivots
- pump 600 to 800 ML annually
- Power cost can vary from $20,000 to $80,000 pa

- Why is there so much variation?
- Is your system close to optimal?
- Are there simple energy savings?
- How do you know?
Why neighbouring farms can have such different energy costs

- Pipe hydraulics - original design, change over time
- Pumps, motors and controllers - Designed for current job?
- Field/irrigator - pressure and productivity
- Your management - when is water required and how much is enough?
- Irrigation System Capacity - can you utilise off peak tariffs?

- Partially beyond your control - elevations, distance piped, decades of old irrigation infrastructure
1/ Pipe hydraulics - forcing water through undersize pipe burns energy!

- Low flow systems and cheaper power - pipe sizing was not a priority

- High flow systems - high water velocities, laminar flow becomes turbulent ... resulting energy loss. (< 1.5ms)

- Know, and manage, the diameter and efficiency of:
 - Mainlines
 - Pivot spans
 - Pump suction and supply lines
2/ Pump/ Motor and the control unit ... Operating outside efficiency range costs a lot

- Are the pumps matched to their pressure and flow “duty”? Appear OK, but operating at 50% energy efficiency!

- Electric motors ... modern electric pump motor efficiency is quite high and stamped on motor. Big energy costs if the power rating of the motor (KW) has been over specified for the pumps power requirement

- Pump starter/controller - Fixed speed soft starters (Star Delta) traditionally. Variable Speed Drive drives do have a role in saving energy.
3/ Irrigation system type - Pressure in the paddock determines your electricity bill
Your irrigation management ...

When is water required and how much run time is enough?
5/ System Capacity - Your system allows you to use off peak tariffs?

- Bike shift, pods, travellers, fixed sprinklers - often designed to irrigate 6 to 10 hrs off peak, apply 30-40 mm
- Centre Pivots - so big, can only get a certain flow rate through pipe. Sprinkler packs limited to 7-12mm/day over the entire area in 24 hour period.
- These CP systems don’t have the capacity to utilise off peak tariffs without compromising yield.
1/Irrigation energy audit (a bit methodical, but 4 steps !)

- **Nuts and bolts** - Record and map the irrigation system from the river foot valve to sprinkler in paddock

Energy wastage can be quite visual:
- Short restricted pipes,
- Throttled pumps,
- Excessive pressures at sprinklers,
- More and more fittings (gate valves, taps, elbows)
- Airlocks, air valves, fitting installation
- Worn and cavitating pumps.
2/ Audit - Are your pumps designed to do the job they are doing?

Record pump, Impeller, Pressure and Flow rates

The only way of knowing if the pump operating at 40% or 70% efficiency!
3/ Calculate energy use:
Does this align with your power bills?

- Calculate energy use on paper ... known pump, pipe, elevation, pressure and flow data current system efficiency (and inefficiencies) can be calculated.

Identify the major energy losses/cost effective changes?

- Does calculated energy requirement align with your power bill?

If not something is not as expected ... slimes, sludges, rust, gravel mineral build up in pipes, blockages air leaks, airlocks, worn pumps, sprinklers/irrigators outside their design specifications ..
4/ Audit conclusions: identify efficiency gains, costs and payback times.

- Defined pump efficiencies allow you to prioritise change.
- VSD pump control - Does it have a logical fit in your system?
- Mainline pipe capacity/diameter - investment versus payback.
- If further irrigation system investment ensure a focus on:
 minimum pressure in field,
 maximum field uniformity and capacity to manage/schedule.
- Alternative energy sources ... the output has to be used well if its to make senses!
The theory:

- Bills are really significant
- Energy efficiency is highly variable
- There’s potential for significant energy savings

In real life...energy savings are often not that complicated!

Talk through a dozen slides
Pipe - mainlines in the field

4 inch angus feeding centre pivot mainline

Pumps throttled at discharge
Pump suction lines...

River pump and suction line

Design with energy cost in mind
Is your ‘standard’ pump efficient and considering the new options

Twin, vertical multistage pumps

Variable Speed Drive
Always consider pressure required at sprinkler

Travelling gun - 100 psi, 50m throw, 60 % uniformity

Centre pivot ‘spinner’ - 15 psi, 5m throw, 90 % uniformity
Farm energy sources - for this sort of investment power has to be used efficiently